These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 28738313)

  • 21. Machine Learning Techniques for Predicting Crop Photosynthetic Capacity from Leaf Reflectance Spectra.
    Heckmann D; Schlüter U; Weber APM
    Mol Plant; 2017 Jun; 10(6):878-890. PubMed ID: 28461269
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine Learning-Assisted Approaches in Modernized Plant Breeding Programs.
    Yoosefzadeh Najafabadi M; Hesami M; Eskandari M
    Genes (Basel); 2023 Mar; 14(4):. PubMed ID: 37107535
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Throughput Phenotyping Enabled Genetic Dissection of Crop Lodging in Wheat.
    Singh D; Wang X; Kumar U; Gao L; Noor M; Imtiaz M; Singh RP; Poland J
    Front Plant Sci; 2019; 10():394. PubMed ID: 31019521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Root phenotyping: from component trait in the lab to breeding.
    Kuijken RC; van Eeuwijk FA; Marcelis LF; Bouwmeester HJ
    J Exp Bot; 2015 Sep; 66(18):5389-401. PubMed ID: 26071534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applications of Artificial Intelligence in Climate-Resilient Smart-Crop Breeding.
    Khan MHU; Wang S; Wang J; Ahmar S; Saeed S; Khan SU; Xu X; Chen H; Bhat JA; Feng X
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232455
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management.
    Reynolds D; Ball J; Bauer A; Davey R; Griffiths S; Zhou J
    Gigascience; 2019 Mar; 8(3):. PubMed ID: 30715329
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decoding Plant-Environment Interactions That Influence Crop Agronomic Traits.
    Mochida K; Nishii R; Hirayama T
    Plant Cell Physiol; 2020 Aug; 61(8):1408-1418. PubMed ID: 32392328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Image-Based High-Throughput Phenotyping in Horticultural Crops.
    Abebe AM; Kim Y; Kim J; Kim SL; Baek J
    Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resources for image-based high-throughput phenotyping in crops and data sharing challenges.
    Danilevicz MF; Bayer PE; Nestor BJ; Bennamoun M; Edwards D
    Plant Physiol; 2021 Oct; 187(2):699-715. PubMed ID: 34608963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative and comparative analysis of whole-plant performance for functional physiological traits phenotyping: New tools to support pre-breeding and plant stress physiology studies.
    Gosa SC; Lupo Y; Moshelion M
    Plant Sci; 2019 May; 282():49-59. PubMed ID: 31003611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement.
    Cobb JN; Declerck G; Greenberg A; Clark R; McCouch S
    Theor Appl Genet; 2013 Apr; 126(4):867-87. PubMed ID: 23471459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-Throughput Plant Phenotyping for Developing Novel Biostimulants: From Lab to Field or From Field to Lab?
    Rouphael Y; Spíchal L; Panzarová K; Casa R; Colla G
    Front Plant Sci; 2018; 9():1197. PubMed ID: 30154818
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer vision and machine learning enabled soybean root phenotyping pipeline.
    Falk KG; Jubery TZ; Mirnezami SV; Parmley KA; Sarkar S; Singh A; Ganapathysubramanian B; Singh AK
    Plant Methods; 2020; 16():5. PubMed ID: 31993072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Translating High-Throughput Phenotyping into Genetic Gain.
    Araus JL; Kefauver SC; Zaman-Allah M; Olsen MS; Cairns JE
    Trends Plant Sci; 2018 May; 23(5):451-466. PubMed ID: 29555431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phenotyping: New Windows into the Plant for Breeders.
    Watt M; Fiorani F; Usadel B; Rascher U; Muller O; Schurr U
    Annu Rev Plant Biol; 2020 Apr; 71():689-712. PubMed ID: 32097567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-throughput field crop phenotyping: current status and challenges.
    Ninomiya S
    Breed Sci; 2022 Mar; 72(1):3-18. PubMed ID: 36045897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bottlenecks and opportunities in field-based high-throughput phenotyping for heat and drought stress.
    Hein NT; Ciampitti IA; Jagadish SVK
    J Exp Bot; 2021 Jul; 72(14):5102-5116. PubMed ID: 33474563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High throughput screening with chlorophyll fluorescence imaging and its use in crop improvement.
    Harbinson J; Prinzenberg AE; Kruijer W; Aarts MG
    Curr Opin Biotechnol; 2012 Apr; 23(2):221-6. PubMed ID: 22054643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding and utilizing crop genome diversity via high-resolution genotyping.
    Voss-Fels K; Snowdon RJ
    Plant Biotechnol J; 2016 Apr; 14(4):1086-94. PubMed ID: 27003869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Breeding technologies to increase crop production in a changing world.
    Tester M; Langridge P
    Science; 2010 Feb; 327(5967):818-22. PubMed ID: 20150489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.