These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 28738313)

  • 41. LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget.
    Vadez V; Kholová J; Hummel G; Zhokhavets U; Gupta SK; Hash CT
    J Exp Bot; 2015 Sep; 66(18):5581-93. PubMed ID: 26034130
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bottlenecks and opportunities in field-based high-throughput phenotyping for heat and drought stress.
    Hein NT; Ciampitti IA; Jagadish SVK
    J Exp Bot; 2021 Jul; 72(14):5102-5116. PubMed ID: 33474563
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High throughput screening with chlorophyll fluorescence imaging and its use in crop improvement.
    Harbinson J; Prinzenberg AE; Kruijer W; Aarts MG
    Curr Opin Biotechnol; 2012 Apr; 23(2):221-6. PubMed ID: 22054643
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Opportunities and Limitations of Crop Phenotyping in Southern European Countries.
    Costa JM; Marques da Silva J; Pinheiro C; Barón M; Mylona P; Centritto M; Haworth M; Loreto F; Uzilday B; Turkan I; Oliveira MM
    Front Plant Sci; 2019; 10():1125. PubMed ID: 31608085
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Understanding and utilizing crop genome diversity via high-resolution genotyping.
    Voss-Fels K; Snowdon RJ
    Plant Biotechnol J; 2016 Apr; 14(4):1086-94. PubMed ID: 27003869
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Breeding technologies to increase crop production in a changing world.
    Tester M; Langridge P
    Science; 2010 Feb; 327(5967):818-22. PubMed ID: 20150489
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics.
    Das A; Schneider H; Burridge J; Ascanio AK; Wojciechowski T; Topp CN; Lynch JP; Weitz JS; Bucksch A
    Plant Methods; 2015; 11():51. PubMed ID: 26535051
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Global crop improvement networks to bridge technology gaps.
    Reynolds MP; Hellin J; Govaerts B; Kosina P; Sonder K; Hobbs P; Braun H
    J Exp Bot; 2012 Jan; 63(1):1-12. PubMed ID: 21926090
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent progress using high-throughput sequencing technologies in plant molecular breeding.
    Gao Q; Yue G; Li W; Wang J; Xu J; Yin Y
    J Integr Plant Biol; 2012 Apr; 54(4):215-27. PubMed ID: 22409591
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Salt stress under the scalpel - dissecting the genetics of salt tolerance.
    Morton MJL; Awlia M; Al-Tamimi N; Saade S; Pailles Y; Negrão S; Tester M
    Plant J; 2019 Jan; 97(1):148-163. PubMed ID: 30548719
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The application of genomics and bioinformatics to accelerate crop improvement in a changing climate.
    Batley J; Edwards D
    Curr Opin Plant Biol; 2016 Apr; 30():78-81. PubMed ID: 26926905
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phenotypic approaches to drought in cassava: review.
    Okogbenin E; Setter TL; Ferguson M; Mutegi R; Ceballos H; Olasanmi B; Fregene M
    Front Physiol; 2013; 4():93. PubMed ID: 23717282
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Breeder friendly phenotyping.
    Reynolds M; Chapman S; Crespo-Herrera L; Molero G; Mondal S; Pequeno DNL; Pinto F; Pinera-Chavez FJ; Poland J; Rivera-Amado C; Saint Pierre C; Sukumaran S
    Plant Sci; 2020 Jun; 295():110396. PubMed ID: 32534615
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optical Imaging Resources for Crop Phenotyping and Stress Detection.
    Waiphara P; Bourgenot C; Compton LJ; Prashar A
    Methods Mol Biol; 2022; 2494():255-265. PubMed ID: 35467213
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phenomics--technologies to relieve the phenotyping bottleneck.
    Furbank RT; Tester M
    Trends Plant Sci; 2011 Dec; 16(12):635-44. PubMed ID: 22074787
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap.
    Großkinsky DK; Svensgaard J; Christensen S; Roitsch T
    J Exp Bot; 2015 Sep; 66(18):5429-40. PubMed ID: 26163702
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence for the Application of Emerging Technologies to Accelerate Crop Improvement - A Collaborative Pipeline to Introgress Herbicide Tolerance Into Chickpea.
    Croser J; Mao D; Dron N; Michelmore S; McMurray L; Preston C; Bruce D; Ogbonnaya FC; Ribalta FM; Hayes J; Lichtenzveig J; Erskine W; Cullis B; Sutton T; Hobson K
    Front Plant Sci; 2021; 12():779122. PubMed ID: 34925421
    [TBL] [Abstract][Full Text] [Related]  

  • 58. One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation.
    Kromdijk J; Long SP
    Proc Biol Sci; 2016 Mar; 283(1826):20152578. PubMed ID: 26962136
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-throughput phenotyping technologies allow accurate selection of stay-green.
    Rebetzke GJ; Jimenez-Berni JA; Bovill WD; Deery DM; James RA
    J Exp Bot; 2016 Sep; 67(17):4919-24. PubMed ID: 27604804
    [No Abstract]   [Full Text] [Related]  

  • 60. Crop Improvement from Phenotyping Roots: Highlights Reveal Expanding Opportunities.
    Tracy SR; Nagel KA; Postma JA; Fassbender H; Wasson A; Watt M
    Trends Plant Sci; 2020 Jan; 25(1):105-118. PubMed ID: 31806535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.