BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 2873837)

  • 1. ATP synthase-mediated proton fluxes and phosphorylation in rat liver mitochondria: dependence on delta mu H.
    Zoratti M; Petronilli V; Azzone GF
    Biochim Biophys Acta; 1986 Aug; 851(1):123-35. PubMed ID: 2873837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of temperature and chronic ethanol feeding on the proton electrochemical potential and phosphate potential in rat liver mitochondria.
    Rottenberg H; Robertson DE; Rubin E
    Biochim Biophys Acta; 1985 Aug; 809(1):1-10. PubMed ID: 2862912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The phosphate potential maintained by mitochondria in State 4 is proportional to the proton-motive force.
    Woelders H; van der Zande WJ; Colen AM; Wanders RJ; van Dam K
    FEBS Lett; 1985 Jan; 179(2):278-82. PubMed ID: 2981706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of oxidative phosphorylation in AS-30D hepatoma mitochondria.
    López-Gómez FJ; Torres-Márquez ME; Moreno-Sánchez R
    Int J Biochem; 1993 Mar; 25(3):373-7. PubMed ID: 8096469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flux-dependent increase in the stoichiometry of charge translocation by mitochondrial ATPase/ATP synthase induced by almitrine.
    Rigoulet M; Fraisse L; Ouhabi R; Guérin B; Fontaine E; Leverve X
    Biochim Biophys Acta; 1990 Jul; 1018(1):91-7. PubMed ID: 2165421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in permeability to protons and other cations at high proton motive force in rat liver mitochondria.
    Brown GC; Brand MD
    Biochem J; 1986 Feb; 234(1):75-81. PubMed ID: 3010957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ATP on various steps controlling the rate of oxidative phosphorylation in newborn rat liver mitochondria.
    Baggetto L; Gautheron DC; Godinot C
    Arch Biochem Biophys; 1984 Aug; 232(2):670-8. PubMed ID: 6087735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic limits to the ATP/site stoichiometries of oxidative phosphorylation by rat liver mitochondria.
    Lemasters JJ; Grunwald R; Emaus RK
    J Biol Chem; 1984 Mar; 259(5):3058-63. PubMed ID: 6321493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes.
    Brand MD; Harper ME; Taylor HC
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):739-48. PubMed ID: 8489502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic limitations in the overall reaction of mitochondrial oxidative phosphorylation accounting for flux-dependent changes in the apparent delta GexP/delta mu H+ ratio.
    Kunz W; Gellerich FN; Schild L; Schönfeld P
    FEBS Lett; 1988 Jun; 233(1):17-21. PubMed ID: 2898384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition by butylmalonate of proton influx in nonphosphorylating mitochondria.
    Fransvea E; La Piana G; Marzulli D; Lofrumento NE
    Arch Biochem Biophys; 1998 Jul; 355(1):93-100. PubMed ID: 9647671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acid uncoupling of oxidative phosphorylation in rat liver mitochondria.
    Rottenberg H; Hashimoto K
    Biochemistry; 1986 Apr; 25(7):1747-55. PubMed ID: 2423115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow-force relationships in mitochondrial oxidative phosphorylation.
    Woelders H; Putters J; van Dam K
    FEBS Lett; 1986 Aug; 204(1):17-21. PubMed ID: 3743759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique relationships between the rates of oxidation and phosphorylation and the protonmotive force in rat-liver mitochondria.
    Woelders H; van der Velden T; van Dam K
    Biochim Biophys Acta; 1988 Jun; 934(1):123-34. PubMed ID: 2837288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free energy coupling between H+-generating and H+-consuming pumps. Ratio between output and input forces.
    Petronilli V; Pietrobon D; Zoratti M; Azzone GF
    Eur J Biochem; 1986 Mar; 155(2):423-31. PubMed ID: 3007129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effect of Mg2+ on the protonophoric activity of palmitic acid.
    Shinohara Y; Unami A; Teshima M; Nishida H; van Dam K; Terada H
    Biochim Biophys Acta; 1995 Mar; 1228(2-3):229-234. PubMed ID: 7893729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of adriamycin on electron transport in rat heart, liver, and tumor mitochondria.
    Bianchi C; Bagnato A; Paggi MG; Floridi A
    Exp Mol Pathol; 1987 Feb; 46(1):123-35. PubMed ID: 2879739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stoichiometry of mitochondrial H+ translocation coupled to succinate oxidation at level flow.
    Costa LE; Reynafarje B; Lehninger AL
    J Biol Chem; 1984 Apr; 259(8):4802-11. PubMed ID: 6232269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple relationships between rate of oxidative phosphorylation and delta microH in rat liver mitochondria.
    Zoratti M; Petronilli V
    FEBS Lett; 1985 Dec; 193(2):276-82. PubMed ID: 4065342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relative proton stoichiometries of the mitochondrial proton pumps are independent of the proton motive force.
    Brown GC
    J Biol Chem; 1989 Sep; 264(25):14704-9. PubMed ID: 2549030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.