These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28738549)

  • 21. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass.
    Li Y; Xing B; Ding Y; Han X; Wang S
    Bioresour Technol; 2020 Sep; 312():123614. PubMed ID: 32517889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tar reduction in pyrolysis vapours from biomass over a hot char bed.
    Gilbert P; Ryu C; Sharifi V; Swithenbank J
    Bioresour Technol; 2009 Dec; 100(23):6045-51. PubMed ID: 19604685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700 °C.
    Yang K; Jiang Y; Yang J; Lin D
    Environ Pollut; 2018 Feb; 233():64-70. PubMed ID: 29053999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: Pore structure, aromaticity and gasification activity.
    Chen H; Chen X; Qin Y; Wei J; Liu H
    Bioresour Technol; 2017 Mar; 228():241-249. PubMed ID: 28068592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.
    Al-Rahbi AS; Onwudili JA; Williams PT
    Bioresour Technol; 2016 Mar; 204():71-79. PubMed ID: 26773946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue.
    Li H; Mahyoub SAA; Liao W; Xia S; Zhao H; Guo M; Ma P
    Bioresour Technol; 2017 Jan; 223():20-26. PubMed ID: 27771526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pyrolysis of Chinese chestnut shells: Effects of temperature and Fe presence on product composition.
    Xia S; Li K; Xiao H; Cai N; Dong Z; Xu C; Chen Y; Yang H; Tu X; Chen H
    Bioresour Technol; 2019 Sep; 287():121444. PubMed ID: 31096102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparative investigation into the formation behaviors of char, liquids and gases during pyrolysis of pinewood and lignocellulosic components.
    Shi X; Wang J
    Bioresour Technol; 2014 Oct; 170():262-269. PubMed ID: 25151069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of slow pyrolysis conditions on biocarbon yield and properties: Characterization of the volatiles.
    Babinszki B; Sebestyén Z; Jakab E; Kőhalmi L; Bozi J; Várhegyi G; Wang L; Skreiberg Ø; Czégény Z
    Bioresour Technol; 2021 Oct; 338():125567. PubMed ID: 34303140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.).
    Angin D; Sensöz S
    Int J Phytoremediation; 2014; 16(7-12):684-93. PubMed ID: 24933878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.
    Li D; Briens C; Berruti F
    Bioresour Technol; 2015; 189():7-14. PubMed ID: 25863324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO.
    Chen X; Li S; Liu Z; Chen Y; Yang H; Wang X; Che Q; Chen W; Chen H
    Bioresour Technol; 2019 Sep; 287():121493. PubMed ID: 31112930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution of the functionalities and structures of biochar in pyrolysis of poplar in a wide temperature range.
    Zhang C; Zhang Z; Zhang L; Li Q; Li C; Chen G; Zhang S; Liu Q; Hu X
    Bioresour Technol; 2020 May; 304():123002. PubMed ID: 32078904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars.
    Kastner JR; Miller J; Das KC
    J Hazard Mater; 2009 May; 164(2-3):1420-7. PubMed ID: 18977081
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis.
    Huff MD; Kumar S; Lee JW
    J Environ Manage; 2014 Dec; 146():303-308. PubMed ID: 25190598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogen production from biomass gasification using biochar as a catalyst/support.
    Yao D; Hu Q; Wang D; Yang H; Wu C; Wang X; Chen H
    Bioresour Technol; 2016 Sep; 216():159-64. PubMed ID: 27240230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of thermochemical treatments on the lignocellulosic structure of wheat straw as studied by natural abundance 13C NMR.
    Habets S; de Wild PJ; Huijgen WJJ; van Eck ERH
    Bioresour Technol; 2013 Oct; 146():585-590. PubMed ID: 23973979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Specific molecular structure changes and radical evolution during biomass-polyethylene terephthalate co-pyrolysis detected by (13)C and (1)H solid-state NMR.
    Ko KH; Sahajwalla V; Rawal A
    Bioresour Technol; 2014 Oct; 170():248-255. PubMed ID: 25146317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of the lignocellulosic material on fast pyrolysis yields and product quality.
    Carrier M; Joubert JE; Danje S; Hugo T; Görgens J; Knoetze JH
    Bioresour Technol; 2013 Dec; 150():129-38. PubMed ID: 24161551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.
    Sanchez-Silva L; López-González D; Villaseñor J; Sánchez P; Valverde JL
    Bioresour Technol; 2012 Apr; 109():163-72. PubMed ID: 22297048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.