BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28738551)

  • 21. Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus.
    Xu N; Zhang W; Ren S; Liu F; Zhao C; Liao H; Xu Z; Huang J; Li Q; Tu Y; Yu B; Wang Y; Jiang J; Qin J; Peng L
    Biotechnol Biofuels; 2012 Aug; 5(1):58. PubMed ID: 22883929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed.
    Pei Y; Li Y; Zhang Y; Yu C; Fu T; Zou J; Tu Y; Peng L; Chen P
    Bioresour Technol; 2016 Mar; 203():325-33. PubMed ID: 26748046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brassinosteroid overproduction improves lignocellulose quantity and quality to maximize bioethanol yield under green-like biomass process in transgenic poplar.
    Fan C; Yu H; Qin S; Li Y; Alam A; Xu C; Fan D; Zhang Q; Wang Y; Zhu W; Peng L; Luo K
    Biotechnol Biofuels; 2020; 13():9. PubMed ID: 31988661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liquid nitrogen pretreatment of eucalyptus sawdust and rice hull for enhanced enzymatic saccharification.
    Castoldi R; Correa VG; de Morais GR; de Souza CGM; Bracht A; Peralta RA; Peralta-Muniz Moreira RF; Peralta RM
    Bioresour Technol; 2017 Jan; 224():648-655. PubMed ID: 27913169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus.
    Zhang W; Yi Z; Huang J; Li F; Hao B; Li M; Hong S; Lv Y; Sun W; Ragauskas A; Hu F; Peng J; Peng L
    Bioresour Technol; 2013 Feb; 130():30-7. PubMed ID: 23298647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments.
    Si S; Chen Y; Fan C; Hu H; Li Y; Huang J; Liao H; Hao B; Li Q; Peng L; Tu Y
    Bioresour Technol; 2015 May; 183():248-54. PubMed ID: 25746301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.
    Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa).
    Zhang W; Wu L; Ding Y; Yao X; Wu X; Weng F; Li G; Liu Z; Tang S; Ding C; Wang S
    J Plant Res; 2017 Sep; 130(5):859-871. PubMed ID: 28451936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of the effects of different pretreatments on the structure and enzymatic hydrolysis of Miscanthus.
    Dai Y; Hu B; Yang Q; Nie L; Sun D
    Biotechnol Appl Biochem; 2022 Apr; 69(2):548-557. PubMed ID: 33608903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diverse Banana Pseudostems and Rachis Are Distinctive for Edible Carbohydrates and Lignocellulose Saccharification towards High Bioethanol Production under Chemical and Liquid Hot Water Pretreatments.
    Li J; Liu F; Yu H; Li Y; Zhou S; Ai Y; Zhou X; Wang Y; Wang L; Peng L; Wang Y
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34202856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioethanol production from steam-exploded rice husk by recombinant Escherichia coli KO11.
    Tabata T; Yoshiba Y; Takashina T; Hieda K; Shimizu N
    World J Microbiol Biotechnol; 2017 Mar; 33(3):47. PubMed ID: 28176202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mechanism for efficient cadmium phytoremediation and high bioethanol production by combined mild chemical pretreatments with desirable rapeseed stalks.
    Wu Y; Wang M; Yu L; Tang SW; Xia T; Kang H; Xu C; Gao H; Madadi M; Alam A; Cheng L; Peng L
    Sci Total Environ; 2020 Mar; 708():135096. PubMed ID: 31806312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alkali-based pretreatments distinctively extract lignin and pectin for enhancing biomass saccharification by altering cellulose features in sugar-rich Jerusalem artichoke stem.
    Li M; Wang J; Yang Y; Xie G
    Bioresour Technol; 2016 May; 208():31-41. PubMed ID: 26918836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochar application enhanced rice biomass production and lodging resistance via promoting co-deposition of silica with hemicellulose and lignin.
    Miao W; Li F; Lu J; Wang D; Chen M; Tang L; Xu Z; Chen W
    Sci Total Environ; 2023 Jan; 855():158818. PubMed ID: 36122710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinct wall polymer deconstruction for high biomass digestibility under chemical pretreatment in Miscanthus and rice.
    Li Y; Zhuo J; Liu P; Chen P; Hu H; Wang Y; Zhou S; Tu Y; Peng L; Wang Y
    Carbohydr Polym; 2018 Jul; 192():273-281. PubMed ID: 29691021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinct cellulose and callose accumulation for enhanced bioethanol production and biotic stress resistance in OsSUS3 transgenic rice.
    Fan C; Wang G; Wu L; Liu P; Huang J; Jin X; Zhang G; He Y; Peng L; Luo K; Feng S
    Carbohydr Polym; 2020 Mar; 232():115448. PubMed ID: 31952577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus.
    Li F; Ren S; Zhang W; Xu Z; Xie G; Chen Y; Tu Y; Li Q; Zhou S; Li Y; Tu F; Liu L; Wang Y; Jiang J; Qin J; Li S; Li Q; Jing HC; Zhou F; Gutterson N; Peng L
    Bioresour Technol; 2013 Feb; 130():629-37. PubMed ID: 23334020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Fragile culm19 (FC19) mutation largely improves plant lodging resistance, biomass saccharification, and cadmium resistance by remodeling cell walls in rice.
    Dang Z; Wang Y; Wang M; Cao L; Ruan N; Huang Y; Li F; Xu Q; Chen W
    J Hazard Mater; 2023 Sep; 458():132020. PubMed ID: 37429191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increase in cellulose accumulation and improvement of saccharification by overexpression of arabinofuranosidase in rice.
    Sumiyoshi M; Nakamura A; Nakamura H; Hakata M; Ichikawa H; Hirochika H; Ishii T; Satoh S; Iwai H
    PLoS One; 2013; 8(11):e78269. PubMed ID: 24223786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of cell wall components of wheat bran following hydrothermal pretreatment and fractionation.
    Merali Z; Collins SR; Elliston A; Wilson DR; Käsper A; Waldron KW
    Biotechnol Biofuels; 2015; 8():23. PubMed ID: 25717345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.