BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28739388)

  • 1. Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli.
    Noh MH; Lim HG; Park S; Seo SW; Jung GY
    Metab Eng; 2017 Sep; 43(Pt A):1-8. PubMed ID: 28739388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise tuning of the glyoxylate cycle in Escherichia coli for efficient tyrosine production from acetate.
    Jo M; Noh MH; Lim HG; Kang CW; Im DK; Oh MK; Jung GY
    Microb Cell Fact; 2019 Mar; 18(1):57. PubMed ID: 30890173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli.
    Miscevic D; Mao JY; Kefale T; Abedi D; Moo-Young M; Perry Chou C
    Biotechnol Bioeng; 2021 Jan; 118(1):30-42. PubMed ID: 32860420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose.
    Kang Z; Wang Y; Gu P; Wang Q; Qi Q
    Metab Eng; 2011 Sep; 13(5):492-8. PubMed ID: 21620993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolome analysis revealed the knockout of glyoxylate shunt as an effective strategy for improvement of 1-butanol production in transgenic Escherichia coli.
    Nitta K; Laviña WA; Pontrelli S; Liao JC; Putri SP; Fukusaki E
    J Biosci Bioeng; 2019 Mar; 127(3):301-308. PubMed ID: 30482596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose.
    Yu X; Jin H; Liu W; Wang Q; Qi Q
    Microb Cell Fact; 2015 Nov; 14():183. PubMed ID: 26577071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmid-Free System and Modular Design for Efficient 5-Aminolevulinic Acid Production by Engineered Escherichia coli.
    Shih IT; Yi YC; Ng IS
    Appl Biochem Biotechnol; 2021 Sep; 193(9):2858-2871. PubMed ID: 33860878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balancing the carbon flux distributions between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in Escherichia coli.
    Deng Y; Ma N; Zhu K; Mao Y; Wei X; Zhao Y
    Metab Eng; 2018 Mar; 46():28-34. PubMed ID: 29477857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli.
    Zhang J; Weng H; Zhou Z; Du G; Kang Z
    Bioresour Technol; 2019 Feb; 274():353-360. PubMed ID: 30537593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli.
    Ding W; Weng H; Du G; Chen J; Kang Z
    J Ind Microbiol Biotechnol; 2017 Aug; 44(8):1127-1135. PubMed ID: 28382525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway.
    Ramzi AB; Hyeon JE; Kim SW; Park C; Han SO
    Enzyme Microb Technol; 2015 Dec; 81():1-7. PubMed ID: 26453466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable and Efficient Biosynthesis of 5-Aminolevulinic Acid Using Plasmid-Free Escherichia coli.
    Cui Z; Jiang Z; Zhang J; Zheng H; Jiang X; Gong K; Liang Q; Wang Q; Qi Q
    J Agric Food Chem; 2019 Feb; 67(5):1478-1483. PubMed ID: 30644739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Escherichia coli for glycolic acid production from D-xylose through the Dahms pathway and glyoxylate bypass.
    Cabulong RB; Lee WK; Bañares AB; Ramos KRM; Nisola GM; Valdehuesa KNG; Chung WJ
    Appl Microbiol Biotechnol; 2018 Mar; 102(5):2179-2189. PubMed ID: 29392388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular control of multiple pathways of Corynebacterium glutamicum for 5-aminolevulinic acid production.
    Ge F; Li X; Ge Q; Zhu D; Li W; Shi F; Chen H
    AMB Express; 2021 Dec; 11(1):179. PubMed ID: 34958433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli.
    Zhang J; Kang Z; Chen J; Du G
    Sci Rep; 2015 Feb; 5():8584. PubMed ID: 25716896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective 5-aminolevulinic acid production via T7 RNA polymerase and RuBisCO equipped Escherichia coli W3110.
    Ting WW; Ng IS
    Biotechnol Bioeng; 2023 Feb; 120(2):583-592. PubMed ID: 36302745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Unnatural Pathway for Efficient 5-Aminolevulinic Acid Biosynthesis with Glycine from Glyoxylate Based on Retrobiosynthetic Design.
    Ren J; Zhou L; Wang C; Lin C; Li Z; Zeng AP
    ACS Synth Biol; 2018 Dec; 7(12):2750-2757. PubMed ID: 30476433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 5-Aminolevulinic acid synthesis in Escherichia coli requires expression of hemA.
    Chen W; Russell CS; Murooka Y; Cosloy SD
    J Bacteriol; 1994 May; 176(9):2743-6. PubMed ID: 8169226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Escherichia coli for efficient coproduction of polyhydroxyalkanoates and 5-aminolevulinic acid.
    Zhang X; Zhang J; Xu J; Zhao Q; Wang Q; Qi Q
    J Ind Microbiol Biotechnol; 2018 Jan; 45(1):43-51. PubMed ID: 29264661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced 5-Aminolevulinic Acid Production by Co-expression of Codon-Optimized hemA Gene with Chaperone in Genetic Engineered Escherichia coli.
    Yu TH; Yi YC; Shih IT; Ng IS
    Appl Biochem Biotechnol; 2020 May; 191(1):299-312. PubMed ID: 31845195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.