These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 28739388)

  • 21. Metabolic engineering to improve 5-aminolevulinic acid production.
    Kang Z; Wang Y; Wang Q; Qi Q
    Bioeng Bugs; 2011; 2(6):342-5. PubMed ID: 22008939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Deficiency of succinic dehydrogenase or succinyl-coA synthetase enhances the production of 5-aminolevulinic acid in recombinant Escherichia coli].
    Pu W; Chen J; Sun C; Chen N; Sun J; Zheng P; Ma Y
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1494-503. PubMed ID: 24432664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid.
    Feng L; Zhang Y; Fu J; Mao Y; Chen T; Zhao X; Wang Z
    Biotechnol Bioeng; 2016 Jun; 113(6):1284-93. PubMed ID: 26616115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 5-Aminolevulinic acid level and dye-decolorizing peroxidase expression regulate heme synthesis in Escherichia coli.
    Feng C; Pan M; Tang L
    Biotechnol Lett; 2022 Feb; 44(2):271-277. PubMed ID: 34826004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-level heterologous production of propionate in engineered Escherichia coli.
    Miscevic D; Mao JY; Moo-Young M; Chou CP
    Biotechnol Bioeng; 2020 May; 117(5):1304-1315. PubMed ID: 31956980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterologous production of 3-hydroxyvalerate in engineered Escherichia coli.
    Miscevic D; Srirangan K; Kefale T; Kilpatrick S; Chung DA; Moo-Young M; Chou CP
    Metab Eng; 2020 Sep; 61():141-151. PubMed ID: 31726215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of succinate by engineered strains of Synechocystis PCC 6803 overexpressing phosphoenolpyruvate carboxylase and a glyoxylate shunt.
    Durall C; Kukil K; Hawkes JA; Albergati A; Lindblad P; Lindberg P
    Microb Cell Fact; 2021 Feb; 20(1):39. PubMed ID: 33557832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification, regulation and production of 5-aminolevulinic acid by green fluorescent protein in recombinant Escherichia coli.
    Tan SI; You SC; Shih IT; Ng IS
    J Biosci Bioeng; 2020 Apr; 129(4):387-394. PubMed ID: 31678067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing 5-aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli.
    Zhu C; Chen J; Wang Y; Wang L; Guo X; Chen N; Zheng P; Sun J; Ma Y
    Biotechnol Bioeng; 2019 Aug; 116(8):2018-2028. PubMed ID: 30934113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heme-deficient mutants of Salmonella typhimurium: two genes required for ALA synthesis.
    Elliott T; Roth JR
    Mol Gen Genet; 1989 Apr; 216(2-3):303-14. PubMed ID: 2664454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcription of the glutamyl-tRNA reductase (hemA) gene in Salmonella typhimurium and Escherichia coli: role of the hemA P1 promoter and the arcA gene product.
    Choi P; Wang L; Archer CD; Elliott T
    J Bacteriol; 1996 Feb; 178(3):638-46. PubMed ID: 8550494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of inducers on the production of 5-aminolevulinic acid by recombinant Escherichia coli.
    Xiaoxia L; Jianping L; Peilin C
    Prep Biochem Biotechnol; 2006; 36(3):223-33. PubMed ID: 16707333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 5-aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase.
    Shin JA; Kwon YD; Kwon OH; Lee HS; Kim P
    J Microbiol Biotechnol; 2007 Sep; 17(9):1579-84. PubMed ID: 18062242
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of glyoxylate pathway without the activation of its related gene in succinate-producing engineered Escherichia coli.
    Zhu LW; Li XH; Zhang L; Li HM; Liu JH; Yuan ZP; Chen T; Tang YJ
    Metab Eng; 2013 Nov; 20():9-19. PubMed ID: 23876414
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Glyoxylate Shunt, 60 Years On.
    Dolan SK; Welch M
    Annu Rev Microbiol; 2018 Sep; 72():309-330. PubMed ID: 30200852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-native Pathway Engineering with CRISPRi for Carbon Dioxide Assimilation and Valued 5-Aminolevulinic Acid Synthesis in
    Effendi SSW; Ng IS
    ACS Synth Biol; 2024 Jul; 13(7):2038-2044. PubMed ID: 38954490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of 5-Aminolevulinic Acid Microbial Cell Factories through Identification of Novel Synthases and Metabolic Pathway Screens and Transporters.
    Wang W; Xiang Y; Yin G; Hu S; Cheng J; Chen J; Du G; Kang Z; Wang Y
    J Agric Food Chem; 2024 Apr; 72(14):8006-8017. PubMed ID: 38554273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial Synthesis of 5-Aminolevulinic Acid and Its Coproduction with Polyhydroxybutyrate.
    Li T; Guo YY; Qiao GQ; Chen GQ
    ACS Synth Biol; 2016 Nov; 5(11):1264-1274. PubMed ID: 27238205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconstitution of TCA cycle with DAOCS to engineer Escherichia coli into an efficient whole cell catalyst of penicillin G.
    Lin B; Fan K; Zhao J; Ji J; Wu L; Yang K; Tao Y
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):9855-9. PubMed ID: 26216972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrated Optimization of the In Vivo Heme Biosynthesis Pathway and the In Vitro Iron Concentration for 5-Aminolevulinate Production.
    Zhang J; Kang Z; Ding W; Chen J; Du G
    Appl Biochem Biotechnol; 2016 Mar; 178(6):1252-62. PubMed ID: 26637361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.