These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 2873952)

  • 1. Autonomic nervous control of the circulatory system in the air-breathing fish Channa argus.
    Ishimatsu A; Johansen K; Nilsson S
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1986; 84(1):55-60. PubMed ID: 2873952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuropeptides and nitric oxide synthase in the gill and the air-breathing organs of fishes.
    Zaccone G; Mauceri A; Fasulo S
    J Exp Zool A Comp Exp Biol; 2006 May; 305(5):428-39. PubMed ID: 16506226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of the heart in the mudpuppy, Necturus maculosus.
    Axelsson M; Nilsson S
    Exp Biol; 1985; 44(4):229-39. PubMed ID: 4085609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gill microcirculation of the air-breathing climbing perch, Anabas testudineus (Bloch):relationships with the accessory respiratory organs and systemic circulation.
    Olson KR; Munshi JS; Ghosh TK; Ojha J
    Am J Anat; 1986 Jul; 176(3):305-20. PubMed ID: 3739953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the adrenergic system of ganoid fish: the beluga, Huso huso (chondrostei).
    Balashov NV; Fänge R; Govyrin VA; Leont'eva GR; Nilsson S; Prozorovskaya MP
    Acta Physiol Scand; 1981 Apr; 111(4):435-40. PubMed ID: 7304205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiovascular changes under normoxic and hypoxic conditions in the air-breathing teleost Synbranchus marmoratus: importance of the venous system.
    Skals M; Skovgaard N; Taylor EW; Leite CA; Abe AS; Wang T
    J Exp Biol; 2006 Oct; 209(Pt 20):4167-73. PubMed ID: 17023609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the heart of a teleost, Gadus morhua, by autonomic nerves and circulating catecholamines.
    Holmgren S
    Acta Physiol Scand; 1977 Jan; 99(1):62-74. PubMed ID: 842366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nervous control of the gills.
    Jonz MG; Zaccone G
    Acta Histochem; 2009; 111(3):207-16. PubMed ID: 19121851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the adrenergic system of ganoid fish: the Florida spotted gar, Lepisosteus platyrhincus (Holostei).
    Nilsson S
    Acta Physiol Scand; 1981 Apr; 111(4):447-54. PubMed ID: 7304207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcirculation of gills and accessory respiratory organs from the air-breathing snakehead fish, Channa punctata, C. gachua, and C. marulius.
    Olson KR; Roy PK; Ghosh TK; Munshi JS
    Anat Rec; 1994 Jan; 238(1):92-107. PubMed ID: 8116893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Branchial vascularization in the eel: action of acetylcholine and adrenaline on the distribution of polymerizable resin in the different vascular compartments].
    Dunel S; Laurent P
    C R Acad Hebd Seances Acad Sci D; 1977 May; 284(20):2011-4. PubMed ID: 408032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomic nerve control of the swimbladder of the goldsinny wrasse, Ctenolabrus rupestris.
    Fänge R; Holmgren S; Nilsson S
    Acta Physiol Scand; 1976 Jul; 97(3):292-303. PubMed ID: 961440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomic control of the heart in the Asian swamp eel (Monopterus albus).
    Iversen NK; Huong do TT; Bayley M; Wang T
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Apr; 158(4):485-9. PubMed ID: 21147247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and vascular anatomy of the gills of a primitive air-breathing fish, the bowfin (Amia calva).
    Olson KR
    Cell Tissue Res; 1981; 218(3):499-517. PubMed ID: 7261039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of catecholamine infusions on myocardial blood flow, metabolic heat production and on general haemodynamics, before and after alprenolol (H56-28), in anaesthetized cats.
    Parratt JR; Wadsworth RM
    Br J Pharmacol; 1970 May; 38(3):554-71. PubMed ID: 4392541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The autonomic control and functional significance of the changes in heart rate associated with air breathing in the jeju, Hoplerythrinus unitaeniatus.
    McKenzie DJ; Campbell HA; Taylor EW; Micheli M; Rantin FT; Abe AS
    J Exp Biol; 2007 Dec; 210(Pt 23):4224-32. PubMed ID: 18025020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomic control of the swimbladder.
    Smith FM; Croll RP
    Auton Neurosci; 2011 Nov; 165(1):140-8. PubMed ID: 20817620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon.
    Brauner CJ; Matey V; Wilson JM; Bernier NJ; Val AL
    J Exp Biol; 2004 Apr; 207(Pt 9):1433-8. PubMed ID: 15037637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurotransmitters in the intestine of the Atlantic cod, Gadus morhua.
    Jensen J; Holmgren S
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 82(1):81-9. PubMed ID: 2414059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respiratory and cardiovascular responses to hypoxia in the Australian lungfish.
    Fritsche R; Axelsson M; Franklin CE; Grigg GG; Holmgren S; Nilsson S
    Respir Physiol; 1993 Nov; 94(2):173-87. PubMed ID: 8272589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.