BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28739529)

  • 1. Control of the NADPH supply for oxidative stress handling in cancer cells.
    Moreno-Sánchez R; Gallardo-Pérez JC; Rodríguez-Enríquez S; Saavedra E; Marín-Hernández Á
    Free Radic Biol Med; 2017 Nov; 112():149-161. PubMed ID: 28739529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of the NADPH supply and GSH recycling for oxidative stress management in hepatoma and liver mitochondria.
    Moreno-Sánchez R; Marín-Hernández Á; Gallardo-Pérez JC; Vázquez C; Rodríguez-Enríquez S; Saavedra E
    Biochim Biophys Acta Bioenerg; 2018 Oct; 1859(10):1138-1150. PubMed ID: 30053395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between NADP-specific isocitrate dehydrogenase and glutathione peroxidase in aging rat skeletal muscle.
    Lawler JM; Demaree SR
    Mech Ageing Dev; 2001 Mar; 122(3):291-304. PubMed ID: 11311317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.
    Lee SM; Koh HJ; Park DC; Song BJ; Huh TL; Park JW
    Free Radic Biol Med; 2002 Jun; 32(11):1185-96. PubMed ID: 12031902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione peroxidase and glutathione reductase activities are partially responsible for determining the susceptibility of cells to oxidative stress.
    Yang MS; Chan HW; Yu LC
    Toxicology; 2006 Sep; 226(2-3):126-30. PubMed ID: 16887253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human sperm glutathione reductase activity in situ reveals limitation in the glutathione antioxidant defense system due to supply of NADPH.
    Storey BT; Alvarez JG; Thompson KA
    Mol Reprod Dev; 1998 Apr; 49(4):400-7. PubMed ID: 9508091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations of the redox state, pentose pathway and glutathione metabolism in an acute porphyria model. Their impact on heme pathway.
    Faut M; Paiz A; San Martín de Viale LC; Mazzetti MB
    Exp Biol Med (Maywood); 2013 Feb; 238(2):133-43. PubMed ID: 23390166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutathione system and activity of NADPH-generating enzymes in the liver of intact rats and animals with toxic hepatitis receiving melatonin.
    Pashkov AN; Popov SS; Semenikhina AV; Rakhmanova TI
    Bull Exp Biol Med; 2005 May; 139(5):565-8. PubMed ID: 16224550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of NADPH-recycling systems in leaves and roots of Arabidopsis thaliana under arsenic-induced stress conditions is accelerated by knock-out of Nudix hydrolase 19 (AtNUDX19) gene.
    Corpas FJ; Aguayo-Trinidad S; Ogawa T; Yoshimura K; Shigeoka S
    J Plant Physiol; 2016 Mar; 192():81-9. PubMed ID: 26878367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of nicotinamide-adenine dinucleotide phosphate-dependent malate dehydrogenase and isocitrate dehydrogenase in the supply of reduced nicotinamide-adenine dinucleotide phosphate for steroidogenesis in the superovulated rat ovary.
    Flint AP; Denton RM
    Biochem J; 1970 Mar; 117(1):73-83. PubMed ID: 4393612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular reduction of selenite into glutathione peroxidase. Evidence for involvement of NADPH and not glutathione as the reductant.
    Bhamre S; Nuzzo RL; Whitin JC; Olshen RA; Cohen HJ
    Mol Cell Biochem; 2000 Aug; 211(1-2):9-17. PubMed ID: 11055542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple NADPH-producing pathways control glutathione (GSH) content in retina.
    Winkler BS; DeSantis N; Solomon F
    Exp Eye Res; 1986 Nov; 43(5):829-47. PubMed ID: 3803464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated activity of the oxidative and non-oxidative pentose phosphate pathway in (pre)neoplastic lesions in rat liver.
    Frederiks WM; Vizan P; Bosch KS; Vreeling-Sindelárová H; Boren J; Cascante M
    Int J Exp Pathol; 2008 Aug; 89(4):232-40. PubMed ID: 18422600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of SkQ1 on Activity of the Glutathione System and NADPH-Generating Enzymes in an Experimental Model of Hyperglycemia.
    Voronkova YG; Popova TN; Agarkov AA; Zinovkin RA
    Biochemistry (Mosc); 2015 Dec; 80(12):1614-21. PubMed ID: 26638687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminum decreases the glutathione regeneration by the inhibition of NADP-isocitrate dehydrogenase in mitochondria.
    Murakami K; Yoshino M
    J Cell Biochem; 2004 Dec; 93(6):1267-71. PubMed ID: 15486972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat.
    Díaz-Flores M; Ibáñez-Hernández MA; Galván RE; Gutiérrez M; Durán-Reyes G; Medina-Navarro R; Pascoe-Lira D; Ortega-Camarillo C; Vilar-Rojas C; Cruz M; Baiza-Gutman LA
    Life Sci; 2006 Apr; 78(22):2601-7. PubMed ID: 16325866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH production, a growth marker, is stimulated by maslinic acid in gilthead sea bream by increased NADP-IDH and ME expression.
    Rufino-Palomares EE; Reyes-Zurita FJ; García-Salguero L; Peragón J; de la Higuera M; Lupiáñez JA
    Comp Biochem Physiol C Toxicol Pharmacol; 2016 Sep; 187():32-42. PubMed ID: 27178358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of NADP-reducing enzymes across varying environmental conditions: a model of biological complexity.
    Rzezniczak TZ; Merritt TJ
    G3 (Bethesda); 2012 Dec; 2(12):1613-23. PubMed ID: 23275884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of lines of mice selected for fat content. 1. Correlated responses in the activities of NADPH-generating enzymes.
    Asante EA; Hill WG; Bulfield G
    Genet Res; 1989 Oct; 54(2):155-60. PubMed ID: 2612901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbohydrate deprivation reduces NADPH-production in fish liver but not in adipose tissue.
    Barroso JB; Peragón J; García-Salguero L; de la Higuera M; Lupiáñez JA
    Int J Biochem Cell Biol; 2001 Aug; 33(8):785-96. PubMed ID: 11404182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.