BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28739905)

  • 1. Effect of ATP and regulatory light-chain phosphorylation on the polymerization of mammalian nonmuscle myosin II.
    Liu X; Billington N; Shu S; Yu SH; Piszczek G; Sellers JR; Korn ED
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):E6516-E6525. PubMed ID: 28739905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymerization pathway of mammalian nonmuscle myosin 2s.
    Liu X; Shu S; Korn ED
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):E7101-E7108. PubMed ID: 29997172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian Nonmuscle Myosin II Binds to Anionic Phospholipids with Concomitant Dissociation of the Regulatory Light Chain.
    Liu X; Shu S; Billington N; Williamson CD; Yu S; Brzeska H; Donaldson JG; Sellers JR; Korn ED
    J Biol Chem; 2016 Nov; 291(48):24828-24837. PubMed ID: 27697842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle myosins form folded monomers, dimers, and tetramers during filament polymerization in vitro.
    Liu X; Shu S; Korn ED
    Proc Natl Acad Sci U S A; 2020 Jul; 117(27):15666-15672. PubMed ID: 32571956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of three full-length human nonmuscle myosin II paralogs.
    Billington N; Wang A; Mao J; Adelstein RS; Sellers JR
    J Biol Chem; 2013 Nov; 288(46):33398-410. PubMed ID: 24072716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple S100 protein isoforms and C-terminal phosphorylation contribute to the paralog-selective regulation of nonmuscle myosin 2 filaments.
    Ecsédi P; Billington N; Pálfy G; Gógl G; Kiss B; Bulyáki É; Bodor A; Sellers JR; Nyitray L
    J Biol Chem; 2018 Sep; 293(38):14850-14867. PubMed ID: 30087119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-muscle (NM) myosin heavy chain phosphorylation regulates the formation of NM myosin filaments, adhesome assembly and smooth muscle contraction.
    Zhang W; Gunst SJ
    J Physiol; 2017 Jul; 595(13):4279-4300. PubMed ID: 28303576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suggesting
    Liu X; Shu S
    Cells; 2024 Jan; 13(3):. PubMed ID: 38334655
    [No Abstract]   [Full Text] [Related]  

  • 9. Filament structure as an essential factor for regulation of Dictyostelium myosin by regulatory light chain phosphorylation.
    Liu X; Ito K; Morimoto S; Hikkoshi-Iwane A; Yanagida T; Uyeda TQ
    Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14124-9. PubMed ID: 9826664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonmuscle myosin IIA with a GFP fused to the N-terminus of the regulatory light chain is regulated normally.
    Kengyel A; Wolf WA; Chisholm RL; Sellers JR
    J Muscle Res Cell Motil; 2010 Sep; 31(3):163-70. PubMed ID: 20711642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broad disorder and the allosteric mechanism of myosin II regulation by phosphorylation.
    Vileno B; Chamoun J; Liang H; Brewer P; Haldeman BD; Facemyer KC; Salzameda B; Song L; Li HC; Cremo CR; Fajer PG
    Proc Natl Acad Sci U S A; 2011 May; 108(20):8218-23. PubMed ID: 21536903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myosin light chain kinase steady-state kinetics: comparison of smooth muscle myosin II and nonmuscle myosin IIB as substrates.
    Alcala DB; Haldeman BD; Brizendine RK; Krenc AK; Baker JE; Rock RS; Cremo CR
    Cell Biochem Funct; 2016 Oct; 34(7):469-474. PubMed ID: 27528075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the filament structure and assembly of Acanthamoeba myosin II by phosphorylation of serines in the heavy-chain nonhelical tailpiece.
    Liu X; Hong MS; Shu S; Yu S; Korn ED
    Proc Natl Acad Sci U S A; 2013 Jan; 110(1):E33-40. PubMed ID: 23248285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myosin II isoform co-assembly and differential regulation in mammalian systems.
    Beach JR; Hammer JA
    Exp Cell Res; 2015 May; 334(1):2-9. PubMed ID: 25655283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of myosin-IIA assembly and Mts1 binding by heavy chain phosphorylation.
    Dulyaninova NG; Malashkevich VN; Almo SC; Bresnick AR
    Biochemistry; 2005 May; 44(18):6867-76. PubMed ID: 15865432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational states of smooth muscle myosin. Effects of light chain phosphorylation and ionic strength.
    Trybus KM; Lowey S
    J Biol Chem; 1984 Jul; 259(13):8564-71. PubMed ID: 6610679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of heavy chain phosphorylation on the polymerization and structure of Dictyostelium myosin filaments.
    Kuczmarski ER; Tafuri SR; Parysek LM
    J Cell Biol; 1987 Dec; 105(6 Pt 2):2989-97. PubMed ID: 3693404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation changes the spatial relationship between Glu124-Arg143 and Cys18 and Cys165 of the regulatory light chain in smooth muscle myosin.
    Wu G; Wong A; Qian F; Lu RC
    Biochemistry; 1998 May; 37(21):7676-85. PubMed ID: 9601027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of myosin light chain phosphorylation on length-dependent myosin kinetics in skinned rat myocardium.
    Pulcastro HC; Awinda PO; Breithaupt JJ; Tanner BC
    Arch Biochem Biophys; 2016 Jul; 601():56-68. PubMed ID: 26763941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of smooth muscle myosin filaments: adaptation of filament length by telokin and Mg·ATP.
    Sobieszek A
    Eur Biophys J; 2022 Sep; 51(6):449-463. PubMed ID: 35821526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.