These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28740153)

  • 1. Continuous and scalable polymer capsule processing for inertial fusion energy target shell fabrication using droplet microfluidics.
    Li J; Lindley-Start J; Porch A; Barrow D
    Sci Rep; 2017 Jul; 7(1):6302. PubMed ID: 28740153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymerization of electric field-centered double emulsion droplets to create polyacrylate shells.
    Tucker-Schwartz AK; Bei Z; Garrell RL; Jones TB
    Langmuir; 2010 Dec; 26(24):18606-11. PubMed ID: 21082795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalable production of double emulsion drops with thin shells.
    Vian A; Reuse B; Amstad E
    Lab Chip; 2018 Jun; 18(13):1936-1942. PubMed ID: 29881836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microencapsulation and fabrication of fuel pellets for inertial confinement fusion.
    Nolen RL; Kool LB
    J Pharm Sci; 1981 Apr; 70(4):364-7. PubMed ID: 7229942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress toward ignition with noncryogenic double-shell capsules.
    Varnum WS; Delamater ND; Evans SC; Gobby PL; Moore JE; Wallace JM; Watt RG; Colvin JD; Turner R; Glebov V; Soures J; Stoeckl C
    Phys Rev Lett; 2000 May; 84(22):5153-5. PubMed ID: 10990890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fill-tube-induced mass perturbations on x-ray-driven, ignition-scale, inertial-confinement-fusion capsule shells and the implications for ignition experiments.
    Bennett GR; Herrmann MC; Edwards MJ; Spears BK; Back CA; Breden EW; Christenson PJ; Cuneo ME; Dannenburg KL; Frederick C; Keller KL; Mulville TD; Nikroo A; Peterson K; Porter JL; Russell CO; Sinars DB; Smith IC; Stamm RM; Vesey RA
    Phys Rev Lett; 2007 Nov; 99(20):205003. PubMed ID: 18233149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stagnation pressure of imploding shells and ignition energy scaling of inertial confinement fusion targets.
    Kemp A; Meyer-ter-Vehn J; Atzeni S
    Phys Rev Lett; 2001 Apr; 86(15):3336-9. PubMed ID: 11327964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors.
    Nie Z; Xu S; Seo M; Lewis PC; Kumacheva E
    J Am Chem Soc; 2005 Jun; 127(22):8058-63. PubMed ID: 15926830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of fluorobenzene mass transfer on the qualities of poly-α-methylstyrene shells.
    Qiang C; Sufen C; Meifang L; Dawei P; Bo L; Zhanwen Z; Xiaobo Q
    RSC Adv; 2018 Jan; 8(7):3687-3693. PubMed ID: 35542901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-interference patterns and their application to inertial-fusion target characterization.
    Wittman MD; Craxton RS
    Appl Opt; 1999 Sep; 38(25):5365-71. PubMed ID: 18324039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet microfluidics for fabrication of non-spherical particles.
    Shum HC; Abate AR; Lee D; Studart AR; Wang B; Chen CH; Thiele J; Shah RK; Krummel A; Weitz DA
    Macromol Rapid Commun; 2010 Jan; 31(2):108-18. PubMed ID: 21590882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled preparation of PAMS hollow core microcapsules with high uniformity and its application in the production of GDP fuel capsules for ICF engineering.
    Chen Q; Liu M; Liu X; Li B; Chen Y
    Fundam Res; 2023 Jul; 3(4):602-610. PubMed ID: 38933543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-energy krypton fluoride lasers for inertial fusion.
    Obenschain S; Lehmberg R; Kehne D; Hegeler F; Wolford M; Sethian J; Weaver J; Karasik M
    Appl Opt; 2015 Nov; 54(31):F103-22. PubMed ID: 26560597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large ultrathin shelled drops produced via non-confined microfluidics.
    Chaurasia AS; Josephides DN; Sajjadi S
    Chemphyschem; 2015 Feb; 16(2):403-11. PubMed ID: 25382308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First Measurements of Deuterium-Tritium and Deuterium-Deuterium Fusion Reaction Yields in Ignition-Scalable Direct-Drive Implosions.
    Forrest CJ; Radha PB; Knauer JP; Glebov VY; Goncharov VN; Regan SP; Rosenberg MJ; Sangster TC; Shmayda WT; Stoeckl C; Gatu Johnson M
    Phys Rev Lett; 2017 Mar; 118(9):095002. PubMed ID: 28306316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of shell mix on feedthrough in direct drive inertial confinement fusion.
    Regan SP; Delettrez JA; Goncharov VN; Marshall FJ; Soures JM; Smalyuk VA; Radha PB; Yaakobi B; Epstein R; Glebov VY; Jaanimagi PA; Meyerhofer DD; Sangster TC; Seka W; Skupsky S; Stoeckl C; Haynes DA; Frenje JA; Li CK; Petrasso RD; Séguin FH
    Phys Rev Lett; 2004 May; 92(18):185002. PubMed ID: 15169493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast picket fence pulse trains to enhance frequency conversion of shaped inertial confinement fusion laser pulses.
    Rothenberg JE
    Appl Opt; 2000 Dec; 39(36):6931-8. PubMed ID: 18354706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo N-Particle forward modeling for density reconstruction of double shell capsule radiographs.
    Byvank T; Meyerhofer DD; Keiter PA; Sagert I; Martinez DA; Montgomery DS; Loomis EN
    Rev Sci Instrum; 2022 Dec; 93(12):123506. PubMed ID: 36586920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond the physics and demonstration of ignition.
    Dean SO
    Philos Trans A Math Phys Eng Sci; 2020 Nov; 378(2184):20200007. PubMed ID: 33040657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First observations of nonhydrodynamic mix at the fuel-shell interface in shock-driven inertial confinement implosions.
    Rinderknecht HG; Sio H; Li CK; Zylstra AB; Rosenberg MJ; Amendt P; Delettrez J; Bellei C; Frenje JA; Gatu Johnson M; Séguin FH; Petrasso RD; Betti R; Glebov VY; Meyerhofer DD; Sangster TC; Stoeckl C; Landen O; Smalyuk VA; Wilks S; Greenwood A; Nikroo A
    Phys Rev Lett; 2014 Apr; 112(13):135001. PubMed ID: 24745431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.