These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 28740160)
1. Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices. Sapienza L; Liu J; Song JD; Fält S; Wegscheider W; Badolato A; Srinivasan K Sci Rep; 2017 Jul; 7(1):6205. PubMed ID: 28740160 [TBL] [Abstract][Full Text] [Related]
2. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication. Liu J; Konthasinghe K; Davanco M; Lawall J; Anant V; Verma V; Mirin R; Woo Nam S; Dong Song J; Ma B; Sheng Chen Z; Qiao Ni H; Chuan Niu Z; Srinivasan K Phys Rev Appl; 2018; 9():. PubMed ID: 30984800 [TBL] [Abstract][Full Text] [Related]
3. [Photoluminescence investigation of InAs bimodal self-assembled quantum dots state filling]. Jia GZ; Yao JH; Zhang CL; Shu Q; Liu RB; Ye XL; Wang ZG Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Nov; 27(11):2178-81. PubMed ID: 18260388 [TBL] [Abstract][Full Text] [Related]
4. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Davanco M; Liu J; Sapienza L; Zhang CZ; De Miranda Cardoso JV; Verma V; Mirin R; Nam SW; Liu L; Srinivasan K Nat Commun; 2017 Oct; 8(1):889. PubMed ID: 29026109 [TBL] [Abstract][Full Text] [Related]
5. Photoluminescence of InAs/GaAs quantum dots under direct two-photon excitation. Hu X; Zhang Y; Guzun D; Ware ME; Mazur YI; Lienau C; Salamo GJ Sci Rep; 2020 Jul; 10(1):10930. PubMed ID: 32616829 [TBL] [Abstract][Full Text] [Related]
6. Growth of InAs Quantum Dots on GaAs (511)A Substrates: The Competition between Thermal Dynamics and Kinetics. Wen L; Gao F; Zhang S; Li G Small; 2016 Aug; 12(31):4277-85. PubMed ID: 27348495 [TBL] [Abstract][Full Text] [Related]
8. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots. Zieliński M J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261 [TBL] [Abstract][Full Text] [Related]
9. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Sapienza L; Davanço M; Badolato A; Srinivasan K Nat Commun; 2015 Jul; 6():7833. PubMed ID: 26211442 [TBL] [Abstract][Full Text] [Related]
10. Telecommunication Wavelength-Band Single-Photon Emission from Single Large InAs Quantum Dots Nucleated on Low-Density Seed Quantum Dots. Chen ZS; Ma B; Shang XJ; He Y; Zhang LC; Ni HQ; Wang JL; Niu ZC Nanoscale Res Lett; 2016 Dec; 11(1):382. PubMed ID: 27576522 [TBL] [Abstract][Full Text] [Related]
11. GaAs surface passivation for InAs/GaAs quantum dot based nanophotonic devices. Chellu A; Koivusalo E; Raappana M; Ranta S; Polojärvi V; Tukiainen A; Lahtonen K; Saari J; Valden M; Seppänen H; Lipsanen H; Guina M; Hakkarainen T Nanotechnology; 2021 Mar; 32(13):130001. PubMed ID: 33276349 [TBL] [Abstract][Full Text] [Related]
12. InAs quantum dots on nanopatterned GaAs (001) surface: the growth, optical properties, and device implementation. Wong PS; Liang B; Huffaker DL J Nanosci Nanotechnol; 2010 Mar; 10(3):1537-50. PubMed ID: 20355542 [TBL] [Abstract][Full Text] [Related]
13. The influence of post-growth annealing on the optical properties of InAs quantum dot chains grown on pre-patterned GaAs(100). Hakkarainen TV; Polojärvi V; Schramm A; Tommila J; Guina M Nanotechnology; 2012 Mar; 23(11):115702. PubMed ID: 22369789 [TBL] [Abstract][Full Text] [Related]
14. Precise Arrays of Epitaxial Quantum Dots Nucleated by In Situ Laser Interference for Quantum Information Technology Applications. Wang YR; Han IS; Jin CY; Hopkinson M ACS Appl Nano Mater; 2020 May; 3(5):4739-4746. PubMed ID: 32582881 [TBL] [Abstract][Full Text] [Related]
15. GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications. Park SI; Trojak OJ; Lee E; Song JD; Kyhm J; Han I; Kim J; Yi GC; Sapienza L Nanotechnology; 2018 May; 29(20):205602. PubMed ID: 29488899 [TBL] [Abstract][Full Text] [Related]
16. Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure. Wong PS; Liang BL; Dorogan VG; Albrecht AR; Tatebayashi J; He X; Nuntawong N; Mazur YI; Salamo GJ; Brueck SR; Huffaker DL Nanotechnology; 2008 Oct; 19(43):435710. PubMed ID: 21832714 [TBL] [Abstract][Full Text] [Related]
17. Spin-cavity interactions between a quantum dot molecule and a photonic crystal cavity. Vora PM; Bracker AS; Carter SG; Sweeney TM; Kim M; Kim CS; Yang L; Brereton PG; Economou SE; Gammon D Nat Commun; 2015 Jul; 6():7665. PubMed ID: 26184654 [TBL] [Abstract][Full Text] [Related]
18. Annealing-Modulated Surface Reconstruction for Self-Assembly of High-Density Uniform InAs/GaAs Quantum Dots on Large Wafers Substrate. Shang X; Su X; Liu H; Hao H; Li S; Dai D; Li M; Yu Y; Zhang Y; Wang G; Xu Y; Ni H; Niu Z Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446475 [TBL] [Abstract][Full Text] [Related]
19. Optical characterization of In-flushed InAs/GaAs quantum dots emitting a broadband spectrum with multiple peaks at ~1 μm. Kitamura S; Senshu M; Katsuyama T; Hino Y; Ozaki N; Ohkouchi S; Sugimoto Y; Hogg RA Nanoscale Res Lett; 2015; 10():231. PubMed ID: 26034422 [TBL] [Abstract][Full Text] [Related]
20. The influence of temperature on the photoluminescence properties of single InAs quantum dots grown on patterned GaAs. Tommila J; Strelow C; Schramm A; Hakkarainen TV; Dumitrescu M; Kipp T; Guina M Nanoscale Res Lett; 2012 Jun; 7(1):313. PubMed ID: 22713215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]