These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 28740223)
1. Dual functional Phi29 DNA polymerase-triggered exponential rolling circle amplification for sequence-specific detection of target DNA embedded in long-stranded genomic DNA. Li XY; Du YC; Zhang YP; Kong DM Sci Rep; 2017 Jul; 7(1):6263. PubMed ID: 28740223 [TBL] [Abstract][Full Text] [Related]
2. The Discovery of Rolling Circle Amplification and Rolling Circle Transcription. Mohsen MG; Kool ET Acc Chem Res; 2016 Nov; 49(11):2540-2550. PubMed ID: 27797171 [TBL] [Abstract][Full Text] [Related]
3. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification. Huang J; Li XY; Du YC; Zhang LN; Liu KK; Zhu LN; Kong DM Biosens Bioelectron; 2017 May; 91():417-423. PubMed ID: 28063390 [TBL] [Abstract][Full Text] [Related]
4. Ligation-rolling circle amplification combined with γ-cyclodextrin mediated stemless molecular beacon for sensitive and specific genotyping of single-nucleotide polymorphism. Zou Z; Qing Z; He X; Wang K; He D; Shi H; Yang X; Qing T; Yang X Talanta; 2014 Jul; 125():306-12. PubMed ID: 24840448 [TBL] [Abstract][Full Text] [Related]
5. Single-stranded DNA binding protein facilitates specific enrichment of circular DNA molecules using rolling circle amplification. Mikawa T; Inoue J; Shigemori Y Anal Biochem; 2009 Aug; 391(2):81-4. PubMed ID: 19442644 [TBL] [Abstract][Full Text] [Related]
6. Optimal DNA templates for rolling circle amplification revealed by in vitro selection. Mao Y; Liu M; Tram K; Gu J; Salena BJ; Jiang Y; Li Y Chemistry; 2015 May; 21(22):8069-74. PubMed ID: 25877998 [TBL] [Abstract][Full Text] [Related]
7. Rolling circle amplification (RCA)-based DNA hydrogel. Yao C; Zhang R; Tang J; Yang D Nat Protoc; 2021 Dec; 16(12):5460-5483. PubMed ID: 34716450 [TBL] [Abstract][Full Text] [Related]
8. Sensitive isothermal detection of nucleic-acid sequence by primer generation-rolling circle amplification. Murakami T; Sumaoka J; Komiyama M Nucleic Acids Res; 2009 Feb; 37(3):e19. PubMed ID: 19106144 [TBL] [Abstract][Full Text] [Related]
9. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms. Li J; Deng T; Chu X; Yang R; Jiang J; Shen G; Yu R Anal Chem; 2010 Apr; 82(7):2811-6. PubMed ID: 20192245 [TBL] [Abstract][Full Text] [Related]
10. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification. Song H; Yang Z; Jiang M; Zhang G; Gao Y; Shen Z; Wu ZS; Lou Y Talanta; 2019 Nov; 204():29-35. PubMed ID: 31357296 [TBL] [Abstract][Full Text] [Related]
11. Chemiluminescent detection of DNA hybridization and single-nucleotide polymorphisms on a solid surface using target-primed rolling circle amplification. Li Z; Li W; Cheng Y; Hao L Analyst; 2008 Sep; 133(9):1164-8. PubMed ID: 18709189 [TBL] [Abstract][Full Text] [Related]
12. Primer remodeling amplification-activated multisite-catalytic hairpin assembly enabling the concurrent formation of Y-shaped DNA nanotorches for the fluorescence assay of ochratoxin A. Wang J; Wang Y; Liu S; Wang H; Zhang X; Song X; Yu J; Huang J Analyst; 2019 May; 144(10):3389-3397. PubMed ID: 30990481 [TBL] [Abstract][Full Text] [Related]
13. Rolling-circle amplification of viral DNA genomes using phi29 polymerase. Johne R; Müller H; Rector A; van Ranst M; Stevens H Trends Microbiol; 2009 May; 17(5):205-11. PubMed ID: 19375325 [TBL] [Abstract][Full Text] [Related]
14. Cell-free cloning using phi29 DNA polymerase. Hutchison CA; Smith HO; Pfannkoch C; Venter JC Proc Natl Acad Sci U S A; 2005 Nov; 102(48):17332-6. PubMed ID: 16286637 [TBL] [Abstract][Full Text] [Related]
15. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification. Xu H; Zhang Y; Zhang S; Sun M; Li W; Jiang Y; Wu ZS Anal Chim Acta; 2019 Jan; 1047():172-178. PubMed ID: 30567647 [TBL] [Abstract][Full Text] [Related]
16. Biosensing by Tandem Reactions of Structure Switching, Nucleolytic Digestion, and DNA Amplification of a DNA Assembly. Liu M; Zhang W; Zhang Q; Brennan JD; Li Y Angew Chem Int Ed Engl; 2015 Aug; 54(33):9637-41. PubMed ID: 26119600 [TBL] [Abstract][Full Text] [Related]
17. TempliPhi, phi29 DNA polymerase based rolling circle amplification of templates for DNA sequencing. Nelson JR; Cai YC; Giesler TL; Farchaus JW; Sundaram ST; Ortiz-Rivera M; Hosta LP; Hewitt PL; Mamone JA; Palaniappan C; Fuller CW Biotechniques; 2002 Jun; Suppl():44-7. PubMed ID: 12083397 [TBL] [Abstract][Full Text] [Related]
18. Rolling circle amplification with fluorescently labeled dUTP-balancing the yield and degree of labeling. Goryunova MS; Arzhanik VK; Zavriev SK; Ryazantsev DY Anal Bioanal Chem; 2021 Jun; 413(14):3737-3748. PubMed ID: 33834268 [TBL] [Abstract][Full Text] [Related]
19. Rolling circle amplification of genomic templates for inverse PCR (RCA-GIP): a method for 5'- and 3'-genome walking without anchoring. Tsaftaris A; Pasentzis K; Argiriou A Biotechnol Lett; 2010 Jan; 32(1):157-61. PubMed ID: 19760115 [TBL] [Abstract][Full Text] [Related]
20. Determination of RNase H activity via real-time monitoring of target-triggered rolling circle amplification. Lee CY; Kang KS; Park KS; Park HG Mikrochim Acta; 2017 Dec; 185(1):53. PubMed ID: 29594533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]