These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28740235)

  • 1. Dendritic optical antennas: scattering properties and fluorescence enhancement.
    Guo K; Antoncecchi A; Zheng X; Sallam M; Soliman EA; Vandenbosch GAE; Moshchalkov VV; Koenderink AF
    Sci Rep; 2017 Jul; 7(1):6223. PubMed ID: 28740235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical scattering resonances of single and coupled dimer plasmonic nanoantennas.
    Muskens OL; Giannini V; Sánchez-Gil JA; Gómez Rivas J
    Opt Express; 2007 Dec; 15(26):17736-46. PubMed ID: 19551070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the optical response of plasmonic nanoantennas.
    Fischer H; Martin OJ
    Opt Express; 2008 Jun; 16(12):9144-54. PubMed ID: 18545626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subwavelength light confinement and enhancement enabled by dissipative dielectric nanostructures.
    Dong K; Deng Y; Wang X; Tom KB; You Z; Yao J
    Opt Lett; 2018 Apr; 43(8):1826-1829. PubMed ID: 29652374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding near/far-field engineering of optical dimer antennas through geometry modification.
    Ding W; Bachelot R; Espiau de Lamaestre R; Macias D; Baudrion AL; Royer P
    Opt Express; 2009 Nov; 17(23):21228-39. PubMed ID: 19997362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical recoil of asymmetric nano-optical antenna.
    Song JH; Shin J; Lim HJ; Lee YH
    Opt Express; 2011 Aug; 19(16):14929-36. PubMed ID: 21934854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the plasmon resonances of metallic nanoantennas.
    Bryant GW; García de Abajo FJ; Aizpurua J
    Nano Lett; 2008 Feb; 8(2):631-6. PubMed ID: 18189444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas.
    Castro-Lopez M; Brinks D; Sapienza R; van Hulst NF
    Nano Lett; 2011 Nov; 11(11):4674-8. PubMed ID: 21970569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime.
    Neubrech F; Weber D; Katzmann J; Huck C; Toma A; Di Fabrizio E; Pucci A; Härtling T
    ACS Nano; 2012 Aug; 6(8):7326-32. PubMed ID: 22804706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient directional excitation of surface plasmons by a single-element nanoantenna.
    Yao W; Liu S; Liao H; Li Z; Sun C; Chen J; Gong Q
    Nano Lett; 2015 May; 15(5):3115-21. PubMed ID: 25848855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of surface plasmon polaritons and other waves on the radiation of a dipole emitter close to a metallic nanowire antenna.
    Liu C; Liu H; Zhong Y
    Opt Express; 2014 Oct; 22(21):25539-49. PubMed ID: 25401587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a gold reflecting-layer in optical antenna substrates for increase of photoluminescence enhancement.
    Fernandez-Garcia R; Rahmani M; Hong M; Maier SA; Sonnefraud Y
    Opt Express; 2013 May; 21(10):12552-61. PubMed ID: 23736474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silencing and enhancement of second-harmonic generation in optical gap antennas.
    Berthelot J; Bachelier G; Song M; Rai P; Colas des Francs G; Dereux A; Bouhelier A
    Opt Express; 2012 May; 20(10):10498-508. PubMed ID: 22565675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling spontaneous emission with plasmonic optical patch antennas.
    Belacel C; Habert B; Bigourdan F; Marquier F; Hugonin JP; de Vasconcellos SM; Lafosse X; Coolen L; Schwob C; Javaux C; Dubertret B; Greffet JJ; Senellart P; Maitre A
    Nano Lett; 2013 Apr; 13(4):1516-21. PubMed ID: 23461679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-field mapping of plasmonic antennas by multiphoton absorption in poly(methyl methacrylate).
    Volpe G; Noack M; Aćimović SS; Reinhardt C; Quidant R
    Nano Lett; 2012 Sep; 12(9):4864-8. PubMed ID: 22894567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates.
    Shegai T; Brian B; Miljković VD; Käll M
    ACS Nano; 2011 Mar; 5(3):2036-41. PubMed ID: 21323329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral properties of plasmonic resonator antennas.
    Barnard ES; White JS; Chandran A; Brongersma ML
    Opt Express; 2008 Oct; 16(21):16529-37. PubMed ID: 18852761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybridized nanocavities as single-polarized plasmonic antennas.
    Yanik AA; Adato R; Erramilli S; Altug H
    Opt Express; 2009 Nov; 17(23):20900-10. PubMed ID: 19997327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purcell effect of nanoshell dimer on single molecule's fluorescence.
    Liaw JW; Chen JH; Chen CS; Kuo MK
    Opt Express; 2009 Aug; 17(16):13532-40. PubMed ID: 19654761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiation engineering of optical antennas for maximum field enhancement.
    Seok TJ; Jamshidi A; Kim M; Dhuey S; Lakhani A; Choo H; Schuck PJ; Cabrini S; Schwartzberg AM; Bokor J; Yablonovitch E; Wu MC
    Nano Lett; 2011 Jul; 11(7):2606-10. PubMed ID: 21648393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.