BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 2874024)

  • 1. Synaptosomal bioenergetics. The role of glycolysis, pyruvate oxidation and responses to hypoglycaemia.
    Kauppinen RA; Nicholls DG
    Eur J Biochem; 1986 Jul; 158(1):159-65. PubMed ID: 2874024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interrelationships between glucose metabolism, energy state, and the cytosolic free calcium concentration in cortical synaptosomes from the guinea pig.
    Kauppinen RA; Taipale HT; Komulainen H
    J Neurochem; 1989 Sep; 53(3):766-71. PubMed ID: 2503588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+-dependent and Ca2+-independent glutamate release, energy status and cytosolic free Ca2+ concentration in isolated nerve terminals following metabolic inhibition: possible relevance to hypoglycaemia and anoxia.
    Kauppinen RA; McMahon HT; Nicholls DG
    Neuroscience; 1988 Oct; 27(1):175-82. PubMed ID: 2904664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aminooxyacetic acid inhibits the malate-aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates.
    Kauppinen RA; Sihra TS; Nicholls DG
    Biochim Biophys Acta; 1987 Sep; 930(2):173-8. PubMed ID: 3620514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyruvate utilization by synaptosomes is independent of calcium.
    Kauppinen RA; Nicholls DG
    FEBS Lett; 1986 Apr; 199(2):222-6. PubMed ID: 3084295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose requirement for postischemic recovery of perfused working heart.
    Mallet RT; Hartman DA; Bünger R
    Eur J Biochem; 1990 Mar; 188(2):481-93. PubMed ID: 2318214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of octanoate on the rate of oxidative phosphorylation and the associated extramitochondrial ATP/ADP ratios studied with isolated rat liver mitochondria oxidizing pyruvate.
    Schönfeld P; Petzold D; Kunz W
    Biomed Biochim Acta; 1984; 43(10):1055-65. PubMed ID: 6525184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy transduction in intact synaptosomes. Influence of plasma-membrane depolarization on the respiration and membrane potential of internal mitochondria determined in situ.
    Scott ID; Nicholls DG
    Biochem J; 1980 Jan; 186(1):21-33. PubMed ID: 7370008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of rat brain mitochondria. Studies on the potassium ion-stimulated oxidation of pyruvate.
    Nicklas WJ; Clark JB; Williamson JR
    Biochem J; 1971 Jun; 123(1):83-95. PubMed ID: 5128666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The specificity and metabolic implications of the inhibition of pyruvate transport in isolated mitochondria and intact tissue preparations by alpha-Cyano-4-hydroxycinnamate and related compounds.
    Halestrap AP; Denton RM
    Biochem J; 1975 Apr; 148(1):97-106. PubMed ID: 1171687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloride-dependent uncoupling of oxidative phosphorylation by triethyllead and triethyltin increases cytosolic free calcium in guinea pig cerebral cortical synaptosomes.
    Kauppinen RA; Komulainen H; Taipale HT
    J Neurochem; 1988 Nov; 51(5):1617-25. PubMed ID: 3171593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose deprivation depolarizes plasma membrane of cultured astrocytes and collapses transmembrane potassium and glutamate gradients.
    Kauppinen RA; Enkvist K; Holopainen I; Akerman KE
    Neuroscience; 1988 Jul; 26(1):283-9. PubMed ID: 2901693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose, Lactate and Glutamine but not Glutamate Support Depolarization-Induced Increased Respiration in Isolated Nerve Terminals.
    Hohnholt MC; Andersen VH; Bak LK; Waagepetersen HS
    Neurochem Res; 2017 Jan; 42(1):191-201. PubMed ID: 27545309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial pyruvate transport in working guinea-pig heart. Work-related vs. carrier-mediated control of pyruvate oxidation.
    Bünger R; Mallet RT
    Biochim Biophys Acta; 1993 Sep; 1151(2):223-36. PubMed ID: 8104034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of 3-nitropropionic acid on synaptosomal energy and transmitter metabolism: relevance to neurodegenerative brain diseases.
    Erecińska M; Nelson D
    J Neurochem; 1994 Sep; 63(3):1033-41. PubMed ID: 7914221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between activation state of pyruvate dehydrogenase complex and rate of pyruvate oxidation in isolated cerebro-cortical mitochondria: effects of potassium ions and adenine nucleotides.
    Lai JC; Sheu KF
    J Neurochem; 1985 Dec; 45(6):1861-8. PubMed ID: 3840524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of round spermatids from rats: lactate as the preferred substrate.
    Mita M; Hall PF
    Biol Reprod; 1982 Apr; 26(3):445-55. PubMed ID: 7082719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of glutamate and aspartate in rat brain synaptosomes.
    Bielarczyk H; Lysiak W; Szutowicz A
    Acta Biochim Pol; 1986; 33(4):239-51. PubMed ID: 2881415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular mechanisms underlying the increase in cytosolic free calcium concentration induced by methylmercury in cerebrocortical synaptosomes from guinea pig.
    Kauppinen RA; Komulainen H; Taipale H
    J Pharmacol Exp Ther; 1989 Mar; 248(3):1248-54. PubMed ID: 2703974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of pyruvate oxidation in blowfly flight muscle mitochondria: requirement for ADP.
    Bulos BA; Thomas BJ; Shukla SP; Sacktor B
    Arch Biochem Biophys; 1984 Nov; 234(2):382-93. PubMed ID: 6497378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.