BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 2874024)

  • 21. Relationships between the neuronal sodium/potassium pump and energy metabolism. Effects of K+, Na+, and adenosine triphosphate in isolated brain synaptosomes.
    Erecińska M; Dagani F
    J Gen Physiol; 1990 Apr; 95(4):591-616. PubMed ID: 2159972
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of glucose and pyruvate metabolism on membrane potential in synaptosomes.
    Aiuchi T; Matsunaga M; Daimatsu T; Nakaya K; Nakamura Y
    Biochim Biophys Acta; 1984 Apr; 771(2):228-34. PubMed ID: 6704397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy-linked regulation of glucose and pyruvate oxidation in isolated perfused rat heart. Role of pyruvate dehydrogenase.
    Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1976 Aug; 440(2):377-90. PubMed ID: 182244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracellular ATP and glutamate drive pyruvate production and energy demand to regulate mitochondrial respiration in astrocytes.
    Juaristi I; Llorente-Folch I; Satrústegui J; Del Arco A
    Glia; 2019 Apr; 67(4):759-774. PubMed ID: 30623988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states.
    Jong YS; Davis EJ
    Arch Biochem Biophys; 1983 Apr; 222(1):179-91. PubMed ID: 6220674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of pancreatic beta-cell mitochondrial metabolism: influence of Ca2+, substrate and ADP.
    Civelek VN; Deeney JT; Shalosky NJ; Tornheim K; Hansford RG; Prentki M; Corkey BE
    Biochem J; 1996 Sep; 318 ( Pt 2)(Pt 2):615-21. PubMed ID: 8809055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intractable unphysiologically low adenylate energy charge values in synaptosome fractions: an explanatory hypothesis based on the fraction's heterogeneity.
    Kyriazi HT; Basford RE
    J Neurochem; 1986 Aug; 47(2):512-28. PubMed ID: 3090202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The regulation of pyruvate oxidation during membrane depolarization of rat brain synaptosomes.
    Schaffer WT; Olson MS
    Biochem J; 1980 Nov; 192(2):741-51. PubMed ID: 7236236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Halothane-induced alterations of glucose and pyruvate metabolism in rat cerebra synaptosomes.
    Johnson GV; Hartzell CR
    J Neurochem; 1985 Jun; 44(6):1838-44. PubMed ID: 3921666
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolism of pyruvate by isolated rat mesenteric lymphocytes, lymphocyte mitochondria and isolated mouse macrophages.
    Curi R; Newsholme P; Newsholme EA
    Biochem J; 1988 Mar; 250(2):383-8. PubMed ID: 3128282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioenergetic response of isolated nerve terminals of rat brain to osmotic swelling.
    Levko AV; Rakovich AA; Konev SV
    Biochemistry (Mosc); 2000 Feb; 65(2):223-9. PubMed ID: 10713552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Glutamic acid oxidation and its regulation in purified mitochondria and nerve endings of rat cerebral cortex].
    Paronian ZhA; Aprikian GV; Adunts EG; Abramian KS
    Vopr Biokhim Mozga; 1976; 11():35-40. PubMed ID: 1032221
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements.
    Mookerjee SA; Gerencser AA; Nicholls DG; Brand MD
    J Biol Chem; 2017 Apr; 292(17):7189-7207. PubMed ID: 28270511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxaloacetate enhances neuronal cell bioenergetic fluxes and infrastructure.
    Wilkins HM; Koppel S; Carl SM; Ramanujan S; Weidling I; Michaelis ML; Michaelis EK; Swerdlow RH
    J Neurochem; 2016 Apr; 137(1):76-87. PubMed ID: 26811028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure.
    Choi SW; Gerencser AA; Nicholls DG
    J Neurochem; 2009 May; 109(4):1179-91. PubMed ID: 19519782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcium uptake in preterminal central synapses: importance of mitochondria.
    Vickers GR; Dowdall MJ
    Exp Brain Res; 1976 Jun; 25(4):429-45. PubMed ID: 954901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From the Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in Caenorhabditis elegans.
    Luz AL; Godebo TR; Bhatt DP; Ilkayeva OR; Maurer LL; Hirschey MD; Meyer JN
    Toxicol Sci; 2016 Aug; 152(2):349-62. PubMed ID: 27208080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of calcium in synaptosomal substrate oxidation.
    Patel TB; Sambasivarao D; Rashed HM
    Arch Biochem Biophys; 1988 Aug; 264(2):368-75. PubMed ID: 3135779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of probes of membrane potential on metabolism in synaptosomes.
    Aiuchi T; Matsunaga M; Nakaya K; Nakamura Y
    Biochim Biophys Acta; 1985 Nov; 843(1-2):20-4. PubMed ID: 4063387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Importance of endogenous substrates in synaptosomal functions.
    Kálmán M; Csillag A; Hajós F
    Int J Neurosci; 1987 May; 34(1-2):19-26. PubMed ID: 2886446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.