These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 28740297)
21. A new comprehensive index for discriminating adulteration in bovine raw milk. Liu J; Ren J; Liu ZM; Guo BH Food Chem; 2015 Apr; 172():251-6. PubMed ID: 25442551 [TBL] [Abstract][Full Text] [Related]
22. Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis. Santos PM; Pereira-Filho ER; Rodriguez-Saona LE Food Chem; 2013 May; 138(1):19-24. PubMed ID: 23265450 [TBL] [Abstract][Full Text] [Related]
23. Genetic parameters of cheese yield and curd nutrient recovery or whey loss traits predicted using Fourier-transform infrared spectroscopy of samples collected during milk recording on Holstein, Brown Swiss, and Simmental dairy cows. Cecchinato A; Albera A; Cipolat-Gotet C; Ferragina A; Bittante G J Dairy Sci; 2015 Jul; 98(7):4914-27. PubMed ID: 25958274 [TBL] [Abstract][Full Text] [Related]
24. The Rapid Detection of Sage Adulteration Using Fourier Transform Infra-Red (FTIR) Spectroscopy and Chemometrics. Galvin-King P; Haughey SA; Montgomery H; Elliott CT J AOAC Int; 2019 Mar; 102(2):354-362. PubMed ID: 30446023 [No Abstract] [Full Text] [Related]
25. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges. Patel DN; Li L; Kee CL; Ge X; Low MY; Koh HL J Pharm Biomed Anal; 2014 Jan; 87():176-90. PubMed ID: 23721687 [TBL] [Abstract][Full Text] [Related]
26. Raman spectroscopy as an effective screening method for detecting adulteration of milk with small nitrogen-rich molecules and sucrose. Nieuwoudt MK; Holroyd SE; McGoverin CM; Simpson MC; Williams DE J Dairy Sci; 2016 Apr; 99(4):2520-2536. PubMed ID: 26874427 [TBL] [Abstract][Full Text] [Related]
27. Rapid detection of adulteration of milks from different species using Fourier Transform Infrared Spectroscopy (FTIR). Cirak O; Icyer NC; Durak MZ J Dairy Res; 2018 May; 85(2):222-225. PubMed ID: 29785908 [TBL] [Abstract][Full Text] [Related]
28. Development of Fourier-transformed mid-infrared spectroscopy prediction models for major constituents of fractions of delactosated, defatted milk obtained through ultra- and nanofiltration. Franzoi M; Manuelian CL; Rovigatti L; Donati E; De Marchi M J Dairy Sci; 2018 Aug; 101(8):6835-6841. PubMed ID: 29753470 [TBL] [Abstract][Full Text] [Related]
29. The effect of the number of observations used for Fourier transform infrared model calibration for bovine milk fat composition on the estimated genetic parameters of the predicted data. Rutten MJ; Bovenhuis H; van Arendonk JA J Dairy Sci; 2010 Oct; 93(10):4872-82. PubMed ID: 20855022 [TBL] [Abstract][Full Text] [Related]
30. A rapid method for detection adulteration in goat milk by using vibrational spectroscopy in combination with chemometric method Yaman H J Food Sci Technol; 2020 Aug; 57(8):3091-3098. PubMed ID: 32624611 [TBL] [Abstract][Full Text] [Related]
31. Screening for subclinical ketosis in dairy cattle by Fourier transform infrared spectrometry. de Roos AP; van den Bijgaart HJ; Hørlyk J; de Jong G J Dairy Sci; 2007 Apr; 90(4):1761-6. PubMed ID: 17369216 [TBL] [Abstract][Full Text] [Related]
32. Detection and quantification of soymilk in cow-buffalo milk using Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR). Jaiswal P; Jha SN; Borah A; Gautam A; Grewal MK; Jindal G Food Chem; 2015 Feb; 168():41-7. PubMed ID: 25172681 [TBL] [Abstract][Full Text] [Related]
33. Rapid detection of melamine adulteration in dairy milk by SB-ATR-Fourier transform infrared spectroscopy. Jawaid S; Talpur FN; Sherazi ST; Nizamani SM; Khaskheli AA Food Chem; 2013 Dec; 141(3):3066-71. PubMed ID: 23871060 [TBL] [Abstract][Full Text] [Related]
34. Analysis of milk adulteration by means of a potentiometric electronic tongue. Perez-Gonzalez C; Garcia-Hernandez C; Garcia-Cabezon C; Rodriguez-Mendez ML; Dias L; Martin-Pedrosa F J Dairy Sci; 2024 Nov; 107(11):9135-9144. PubMed ID: 39004125 [TBL] [Abstract][Full Text] [Related]
35. Comparison of FT-NIR Spectroscopy and ELISA for Detection of Adulteration of Goat Cheeses with Cow's Milk. Dvorak L; Mlcek J; Sustova K J AOAC Int; 2016; 99(1):180-6. PubMed ID: 26822518 [TBL] [Abstract][Full Text] [Related]
36. Short communication: Variations in major mineral contents of Mediterranean buffalo milk and application of Fourier-transform infrared spectroscopy for their prediction. Stocco G; Cipolat-Gotet C; Bonfatti V; Schiavon S; Bittante G; Cecchinato A J Dairy Sci; 2016 Nov; 99(11):8680-8686. PubMed ID: 27614834 [TBL] [Abstract][Full Text] [Related]
37. Rapid discrimination between buffalo and cow milk and detection of adulteration of buffalo milk with cow milk using synchronous fluorescence spectroscopy in combination with multivariate methods. Durakli Velioglu S; Ercioglu E; Boyaci IH J Dairy Res; 2017 May; 84(2):214-219. PubMed ID: 28325170 [TBL] [Abstract][Full Text] [Related]
38. Combining Fourier Transform Mid-Infrared Spectroscopy with Chemometric Methods to Detect Adulterations in Milk Powder. Feng L; Zhu S; Chen S; Bao Y; He Y Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31277225 [TBL] [Abstract][Full Text] [Related]
39. Short communication: Fourier-transform mid-infrared spectroscopy to predict coagulation and acidity traits of sheep bulk milk. Manuelian CL; Penasa M; Giangolini G; Boselli C; Currò S; De Marchi M J Dairy Sci; 2019 Mar; 102(3):1927-1932. PubMed ID: 30612792 [TBL] [Abstract][Full Text] [Related]
40. Authentication and identification of adulterants in virgin coconut oil using ATR/FTIR in tandem with DD-SIMCA one class modeling. Neves MG; Poppi RJ Talanta; 2020 Nov; 219():121338. PubMed ID: 32887068 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]