These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28740331)

  • 41. Classification of motor imagery tasks for BCI with multiresolution analysis and multiobjective feature selection.
    Ortega J; Asensio-Cubero J; Gan JQ; Ortiz A
    Biomed Eng Online; 2016 Jul; 15 Suppl 1(Suppl 1):73. PubMed ID: 27454531
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data.
    Saa JF; Çetin M
    J Neural Eng; 2012 Apr; 9(2):026020. PubMed ID: 22414728
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improving Generalization Based on
    Zhao Y; Han J; Chen Y; Sun H; Chen J; Ke A; Han Y; Zhang P; Zhang Y; Zhou J; Wang C
    Front Neurosci; 2018; 12():272. PubMed ID: 29867307
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Nov; 255():85-91. PubMed ID: 26277421
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A new parameter tuning approach for enhanced motor imagery EEG signal classification.
    Kumar S; Sharma A
    Med Biol Eng Comput; 2018 Oct; 56(10):1861-1874. PubMed ID: 29616456
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Quasi-probabilistic distribution model for EEG Signal classification by using 2-D signal representation.
    Murat Yilmaz C; Kose C; Hatipoglu B
    Comput Methods Programs Biomed; 2018 Aug; 162():187-196. PubMed ID: 29903485
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamic frequency feature selection based approach for classification of motor imageries.
    Luo J; Feng Z; Zhang J; Lu N
    Comput Biol Med; 2016 Aug; 75():45-53. PubMed ID: 27253616
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters.
    Pfurtscheller G; Neuper C; Schlögl A; Lugger K
    IEEE Trans Rehabil Eng; 1998 Sep; 6(3):316-25. PubMed ID: 9749909
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simple adaptive sparse representation based classification schemes for EEG based brain-computer interface applications.
    Shin Y; Lee S; Ahn M; Cho H; Jun SC; Lee HN
    Comput Biol Med; 2015 Nov; 66():29-38. PubMed ID: 26378500
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Feasibility of approaches combining sensor and source features in brain-computer interface.
    Ahn M; Hong JH; Jun SC
    J Neurosci Methods; 2012 Feb; 204(1):168-178. PubMed ID: 22108142
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Relevant Feature Selection from a Combination of Spectral-Temporal and Spatial Features for Classification of Motor Imagery EEG.
    Kirar JS; Agrawal RK
    J Med Syst; 2018 Mar; 42(5):78. PubMed ID: 29546648
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Motor Imagery EEG Classification for Patients with Amyotrophic Lateral Sclerosis Using Fractal Dimension and Fisher's Criterion-Based Channel Selection.
    Liu YH; Huang S; Huang YD
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28671629
    [TBL] [Abstract][Full Text] [Related]  

  • 53. User's Self-Prediction of Performance in Motor Imagery Brain-Computer Interface.
    Ahn M; Cho H; Ahn S; Jun SC
    Front Hum Neurosci; 2018; 12():59. PubMed ID: 29497370
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Transform-Based Feature Extraction Approach for Motor Imagery Tasks Classification.
    Baali H; Khorshidtalab A; Mesbah M; Salami MJ
    IEEE J Transl Eng Health Med; 2015; 3():2100108. PubMed ID: 27170898
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of quantum-behaved particle swarm optimization to motor imagery EEG classification.
    Hsu WY
    Int J Neural Syst; 2013 Dec; 23(6):1350026. PubMed ID: 24156669
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spectral estimation of EEG signals using cascaded inverse filters.
    Dutt DN
    Int J Biomed Comput; 1994 Aug; 36(4):251-6. PubMed ID: 8002102
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Separable Common Spatio-Spectral Patterns for Motor Imagery BCI Systems.
    Aghaei AS; Mahanta MS; Plataniotis KN
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):15-29. PubMed ID: 26452197
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improving signal separability and inter-session stability for a brain-computer interface by time-series-prediction-preprocessing.
    Coyle D; Prasad G; McGinnity T
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():5412-5. PubMed ID: 17281476
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces.
    Rodrigues PG; Filho CAS; Attux R; Castellano G; Soriano DC
    Med Biol Eng Comput; 2019 Aug; 57(8):1709-1725. PubMed ID: 31127535
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.
    Kumar S; Mamun K; Sharma A
    Comput Biol Med; 2017 Dec; 91():231-242. PubMed ID: 29100117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.