These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 28741083)
1. Construction of bioengineered yeast platform for direct bioethanol production from alginate and mannitol. Takagi T; Sasaki Y; Motone K; Shibata T; Tanaka R; Miyake H; Mori T; Kuroda K; Ueda M Appl Microbiol Biotechnol; 2017 Sep; 101(17):6627-6636. PubMed ID: 28741083 [TBL] [Abstract][Full Text] [Related]
2. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Enquist-Newman M; Faust AM; Bravo DD; Santos CN; Raisner RM; Hanel A; Sarvabhowman P; Le C; Regitsky DD; Cooper SR; Peereboom L; Clark A; Martinez Y; Goldsmith J; Cho MY; Donohoue PD; Luo L; Lamberson B; Tamrakar P; Kim EJ; Villari JL; Gill A; Tripathi SA; Karamchedu P; Paredes CJ; Rajgarhia V; Kotlar HK; Bailey RB; Miller DJ; Ohler NL; Swimmer C; Yoshikuni Y Nature; 2014 Jan; 505(7482):239-43. PubMed ID: 24291791 [TBL] [Abstract][Full Text] [Related]
3. Platform construction of molecular breeding for utilization of brown macroalgae. Takagi T; Kuroda K; Ueda M J Biosci Bioeng; 2018 Jan; 125(1):1-7. PubMed ID: 28877851 [TBL] [Abstract][Full Text] [Related]
4. Direct bioethanol production from brown macroalgae by co-culture of two engineered Saccharomyces cerevisiae strains. Sasaki Y; Takagi T; Motone K; Shibata T; Kuroda K; Ueda M Biosci Biotechnol Biochem; 2018 Aug; 82(8):1459-1462. PubMed ID: 29708475 [TBL] [Abstract][Full Text] [Related]
5. Crucial role of 4-deoxy-L-erythro-5-hexoseulose uronate reductase for alginate utilization revealed by adaptive evolution in engineered Saccharomyces cerevisiae. Matsuoka F; Hirayama M; Kashihara T; Tanaka H; Hashimoto W; Murata K; Kawai S Sci Rep; 2017 Jun; 7(1):4206. PubMed ID: 28646149 [TBL] [Abstract][Full Text] [Related]
6. An engineered microbial platform for direct biofuel production from brown macroalgae. Wargacki AJ; Leonard E; Win MN; Regitsky DD; Santos CN; Kim PB; Cooper SR; Raisner RM; Herman A; Sivitz AB; Lakshmanaswamy A; Kashiyama Y; Baker D; Yoshikuni Y Science; 2012 Jan; 335(6066):308-13. PubMed ID: 22267807 [TBL] [Abstract][Full Text] [Related]
7. Regulation of pH attenuates toxicity of a byproduct produced by an ethanologenic strain of Sphingomonas sp. A1 during ethanol fermentation from alginate. Fujii M; Yoshida S; Murata K; Kawai S Bioengineered; 2014; 5(1):38-44. PubMed ID: 24445222 [TBL] [Abstract][Full Text] [Related]
8. Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production. Yazdani P; Zamani A; Karimi K; Taherzadeh MJ Bioresour Technol; 2015 Jan; 176():196-202. PubMed ID: 25461003 [TBL] [Abstract][Full Text] [Related]
9. Efficacy of acidic pretreatment for the saccharification and fermentation of alginate from brown macroalgae. Wang D; Yun EJ; Kim S; Kim do H; Seo N; An HJ; Kim JH; Cheong NY; Kim KH Bioprocess Biosyst Eng; 2016 Jun; 39(6):959-66. PubMed ID: 26923145 [TBL] [Abstract][Full Text] [Related]
10. Optimal production of 4-deoxy-L-erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo- and exo-type alginate lyases. Wang DM; Kim HT; Yun EJ; Kim DH; Park YC; Woo HC; Kim KH Bioprocess Biosyst Eng; 2014 Oct; 37(10):2105-11. PubMed ID: 24794171 [TBL] [Abstract][Full Text] [Related]
11. Biofuel Production Based on Carbohydrates from Both Brown and Red Macroalgae: Recent Developments in Key Biotechnologies. Kawai S; Murata K Int J Mol Sci; 2016 Feb; 17(2):145. PubMed ID: 26861307 [TBL] [Abstract][Full Text] [Related]
12. Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate. Takagi T; Yokoi T; Shibata T; Morisaka H; Kuroda K; Ueda M Appl Microbiol Biotechnol; 2016 Feb; 100(4):1723-1732. PubMed ID: 26490549 [TBL] [Abstract][Full Text] [Related]
13. Analyzing redox balance in a synthetic yeast platform to improve utilization of brown macroalgae as feedstock. Contador CA; Shene C; Olivera A; Yoshikuni Y; Buschmann A; Andrews BA; Asenjo JA Metab Eng Commun; 2015 Dec; 2():76-84. PubMed ID: 34150511 [TBL] [Abstract][Full Text] [Related]
14. Direct ethanol fermentation of the algal storage polysaccharide laminarin with an optimized combination of engineered yeasts. Motone K; Takagi T; Sasaki Y; Kuroda K; Ueda M J Biotechnol; 2016 Aug; 231():129-135. PubMed ID: 27287535 [TBL] [Abstract][Full Text] [Related]
15. Efficient conversion of mannitol derived from brown seaweed to fructose for fermentation with a thraustochytrid. Tajima T; Tomita K; Miyahara H; Watanabe K; Aki T; Okamura Y; Matsumura Y; Nakashimada Y; Kato J J Biosci Bioeng; 2018 Feb; 125(2):180-184. PubMed ID: 28970111 [TBL] [Abstract][Full Text] [Related]
16. Direct and robust citramalate production from brown macroalgae using fast-growing Vibrio sp. dhg. Lee HK; Woo S; Baek D; Min M; Jung GY; Lim HG Bioresour Technol; 2024 Feb; 394():130304. PubMed ID: 38211713 [TBL] [Abstract][Full Text] [Related]
17. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae. Yoshida S; Tanaka H; Hirayama M; Murata K; Kawai S Bioengineered; 2015; 6(6):347-50. PubMed ID: 26588105 [TBL] [Abstract][Full Text] [Related]
19. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation. Dong SJ; Lin XH; Li H Int J Biochem Cell Biol; 2015 Nov; 68():33-41. PubMed ID: 26279142 [TBL] [Abstract][Full Text] [Related]
20. Uncovering the reactive nature of 4-deoxy-L-erythro-5-hexoseulose uronate for the utilization of alginate, a promising marine biopolymer. Nakata S; Murata K; Hashimoto W; Kawai S Sci Rep; 2019 Nov; 9(1):17147. PubMed ID: 31748627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]