These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 28741084)

  • 1. Towards the prediction of flow-induced shear stress distributions experienced by breast cancer cells in the lymphatics.
    Morley ST; Newport DT; Walsh MT
    Biomech Model Mechanobiol; 2017 Dec; 16(6):2051-2062. PubMed ID: 28741084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The advection of microparticles, MCF-7 and MDA-MB-231 breast cancer cells in response to very low Reynolds numbers.
    Morley ST; Walsh MT; Newport DT
    Biomicrofluidics; 2017 May; 11(3):034105. PubMed ID: 28529671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of TRPV₄-C₁ -mediated calcium signaling in vascular endothelial cells induced by fluid shear stress and ATP.
    Li LF; Xiang C; Qin KR
    Biomech Model Mechanobiol; 2015 Oct; 14(5):979-93. PubMed ID: 25577546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear strength of wet granular materials: Macroscopic cohesion and effective stress : Discrete numerical simulations, confronted to experimental measurements.
    Badetti M; Fall A; Chevoir F; Roux JN
    Eur Phys J E Soft Matter; 2018 May; 41(5):68. PubMed ID: 29802504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and flow characteristics of an oscillating cylindrical fiber for total artificial lung application.
    Qamar A; Bull JL
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(11):1195-1211. PubMed ID: 28658585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PIV investigation of the flow fields in subject-specific vertebro-basilar (VA-BA) junction.
    Zhu G; Wei Y; Yuan Q; Yang J; Yeo JH
    Biomed Eng Online; 2019 Sep; 18(1):93. PubMed ID: 31492145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signature of jamming under steady shear in dense particulate suspensions.
    Dhar S; Chattopadhyay S; Majumdar S
    J Phys Condens Matter; 2020 Mar; 32(12):124002. PubMed ID: 31770741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ex vivo lymphatic perfusion system for independently controlling pressure gradient and transmural pressure in isolated vessels.
    Kornuta JA; Dixon JB
    Ann Biomed Eng; 2014 Aug; 42(8):1691-704. PubMed ID: 24809724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical study on the dynamics of primary cilium in pulsatile flows by the immersed boundary-lattice Boltzmann method.
    Cui J; Liu Y; Fu BM
    Biomech Model Mechanobiol; 2020 Feb; 19(1):21-35. PubMed ID: 31256275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forecasting shear stress parameters in rectangular channels using new soft computing methods.
    Sheikh Khozani Z; Sheikhi S; Mohtar WHMW; Mosavi A
    PLoS One; 2020; 15(4):e0229731. PubMed ID: 32271780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opportunities for Studying the Hydrodynamic Context for Breast Cancer Cell Spread Through Lymph Flow.
    Morley ST; Walsh MT; Newport DT
    Lymphat Res Biol; 2017 Sep; 15(3):204-219. PubMed ID: 28749743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.
    Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP
    Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A one-dimensional mathematical model of collecting lymphatics coupled with an electro-fluid-mechanical contraction model and valve dynamics.
    Contarino C; Toro EF
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1687-1714. PubMed ID: 30006745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical behavior near the reversible-irreversible transition in periodically driven vortices under random local shear.
    Maegochi S; Ienaga K; Kaneko S; Okuma S
    Sci Rep; 2019 Nov; 9(1):16447. PubMed ID: 31712623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.
    Jiang Y; Li G; Qian LX; Liang S; Destrade M; Cao Y
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1119-28. PubMed ID: 25697960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient-Specific Computational Analysis of Hemodynamics in Adult Pulmonary Hypertension.
    Pillalamarri NR; Piskin S; Patnaik SS; Murali S; Finol EA
    Ann Biomed Eng; 2021 Dec; 49(12):3465-3480. PubMed ID: 34799807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single flexible and semiflexible polymers at high shear: non-monotonic and non-universal stretching response.
    Sendner C; Netz RR
    Eur Phys J E Soft Matter; 2009 Sep; 30(1):75-81. PubMed ID: 19777277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-steady peristaltic propulsion with exponential variable viscosity: a study of transport through the digestive system.
    Tripathi D; Pandey SK; Siddiqui A; Bég OA
    Comput Methods Biomech Biomed Engin; 2014; 17(6):591-603. PubMed ID: 22817394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interspecific scaling of blood flow rates and arterial sizes in mammals.
    Seymour RS; Hu Q; Snelling EP; White CR
    J Exp Biol; 2019 Apr; 222(Pt 7):. PubMed ID: 30877224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.