BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 28741110)

  • 1. Biosensor of alkaline phosphatase based on non-fluorescent FRET of Eu
    Li FS; Zhang YL; Li XB; Li BL; Liu YF
    Anal Bioanal Chem; 2017 Sep; 409(23):5491-5500. PubMed ID: 28741110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time ratiometric fluorescent assay for alkaline phosphatase activity with stimulus responsive infinite coordination polymer nanoparticles.
    Deng J; Yu P; Wang Y; Mao L
    Anal Chem; 2015 Mar; 87(5):3080-6. PubMed ID: 25634037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent enzyme-linked immunosorbent assay based on alkaline phosphatase-responsive coordination polymer composite.
    Li S; Hu X; Li Y; Tan H
    Mikrochim Acta; 2021 Jul; 188(8):263. PubMed ID: 34287706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared mito-specific fluorescent probe for ratiometric detection and imaging of alkaline phosphatase activity with high sensitivity.
    Zhang Q; Li S; Fu C; Xiao Y; Zhang P; Ding C
    J Mater Chem B; 2019 Jan; 7(3):443-450. PubMed ID: 32254731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upconversional Nanoprobes with Highly Efficient Energy Transfer for Ultrasensitive Detection of Alkaline Phosphatase.
    Gao M; Wu R; Mei Q; Zhang C; Ling X; Deng S; He H; Zhang Y
    ACS Sens; 2019 Nov; 4(11):2864-2868. PubMed ID: 31592656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET Effect between Fluorescent Polydopamine Nanoparticles and MnO
    Xiao T; Sun J; Zhao J; Wang S; Liu G; Yang X
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6560-6569. PubMed ID: 29384352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of Cancer Cell-Based pH-Sensitive Fluorescent Carbon Nanoparticles of Cross-Linked Polydopamine by Fluorescence Sensing of Alkaline Phosphatase Activity on Coated Surfaces and Aqueous Solution.
    Kang EB; Choi CA; Mazrad ZAI; Kim SH; In I; Park SY
    Anal Chem; 2017 Dec; 89(24):13508-13517. PubMed ID: 29137454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the activity of alkaline phosphatase by using nanoclusters composed of flower-like cobalt oxyhydroxide and copper nanoclusters as fluorescent probes.
    Wang HB; Li Y; Chen Y; Zhang ZP; Gan T; Liu YM
    Mikrochim Acta; 2018 Jan; 185(2):102. PubMed ID: 29594450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polydopamine nanodots are viable probes for fluorometric determination of the activity of alkaline phosphatase via the in situ regulation of a redox reaction triggered by the enzyme.
    Xue Q; Cao X; Zhang C; Xian Y
    Mikrochim Acta; 2018 Mar; 185(4):231. PubMed ID: 29594735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cascade FRET-mediated ratiometric sensor for Cu2+ ions based on dual fluorescent ligand-coated polymer nanoparticles.
    Frigoli M; Ouadahi K; Larpent C
    Chemistry; 2009 Aug; 15(33):8319-30. PubMed ID: 19575425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sensitive fluorescence biosensor for alkaline phosphatase activity based on the Cu(II)-dependent DNAzyme.
    Zhao M; Guo Y; Wang L; Luo F; Lin C; Lin Z; Chen G
    Anal Chim Acta; 2016 Dec; 948():98-103. PubMed ID: 27871616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ratiometric detection of copper ions and alkaline phosphatase activity based on semiconducting polymer dots assembled with rhodamine B hydrazide.
    Sun J; Mei H; Gao F
    Biosens Bioelectron; 2017 May; 91():70-75. PubMed ID: 28012320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrarapid Microwave-Assisted Synthesis of Fluorescent Silver Coordination Polymer Nanoparticles and Its Application in Detecting Alkaline Phosphatase Activity.
    Pei K; Li D; Qi W; Wu D
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent Biosensor for Phosphate Determination Based on Immobilized Polyfluorene-Liposomal Nanoparticles Coupled with Alkaline Phosphatase.
    Kahveci Z; Martínez-Tomé MJ; Mallavia R; Mateo CR
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):136-144. PubMed ID: 27966351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium hexametaphosphate modulated fluorescence responsive biosensor based on self-assembly / disassembly mode of reduced-graphene quantum dots / chitosan system for alkaline phosphatase.
    Shi F; Li J; Sun J; Huang H; Su X; Wang Z
    Talanta; 2020 Jan; 207():120341. PubMed ID: 31594589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel self-assembled dual-emissive ratiometric fluorescent nanoprobe for alkaline phosphatase sensing.
    Han Z; Wang N; Lv Y; Fu Q; Wang G; Su X
    Anal Chim Acta; 2024 Jan; 1287():342146. PubMed ID: 38182401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time fluorescence assay of alkaline phosphatase in living cells using boron-doped graphene quantum dots as fluorophores.
    Chen L; Yang G; Wu P; Cai C
    Biosens Bioelectron; 2017 Oct; 96():294-299. PubMed ID: 28511112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fluorescence turn on assay for alkaline phosphatase based on the Cu(2+) catalyzed Fenton-like reaction.
    Zhang Q; Zhang C; Shahzad SA; Yu C
    Talanta; 2016 Sep; 158():342-350. PubMed ID: 27343614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.
    Mahajan PG; Bhopate DP; Kolekar GB; Patil SR
    J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A smartphone-based platform for point-of-use determination of alkaline phosphatase as an indicator of water eutrophication.
    You X; Huang C; Luo Y; Shi G; Zhou T; Deng J
    Mikrochim Acta; 2020 May; 187(6):354. PubMed ID: 32468296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.