These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 28741177)

  • 1. Birth/birth-death processes and their computable transition probabilities with biological applications.
    Ho LST; Xu J; Crawford FW; Minin VN; Suchard MA
    J Math Biol; 2018 Mar; 76(4):911-944. PubMed ID: 28741177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gaussian process approximations for fast inference from infectious disease data.
    Buckingham-Jeffery E; Isham V; House T
    Math Biosci; 2018 Jul; 301():111-120. PubMed ID: 29471011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inference of epidemiological parameters from household stratified data.
    Walker JN; Ross JV; Black AJ
    PLoS One; 2017; 12(10):e0185910. PubMed ID: 29045456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic SIR epidemics in a population with households and schools.
    Ouboter T; Meester R; Trapman P
    J Math Biol; 2016 Apr; 72(5):1177-93. PubMed ID: 26070348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An exact and implementable computation of the final outbreak size distribution under Erlang distributed infectious period.
    İşlier ZG; Güllü R; Hörmann W
    Math Biosci; 2020 Jul; 325():108363. PubMed ID: 32360771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian inference for Markov jump processes with informative observations.
    Golightly A; Wilkinson DJ
    Stat Appl Genet Mol Biol; 2015 Apr; 14(2):169-88. PubMed ID: 25720091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent.
    Wang Y; Christley S; Mjolsness E; Xie X
    BMC Syst Biol; 2010 Jul; 4():99. PubMed ID: 20663171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Likelihood free inference for Markov processes: a comparison.
    Owen J; Wilkinson DJ; Gillespie CS
    Stat Appl Genet Mol Biol; 2015 Apr; 14(2):189-209. PubMed ID: 25720092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Random migration processes between two stochastic epidemic centers.
    Sazonov I; Kelbert M; Gravenor MB
    Math Biosci; 2016 Apr; 274():45-57. PubMed ID: 26877075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of stochastic epidemics on heterogeneous networks.
    Graham M; House T
    J Math Biol; 2014 Jun; 68(7):1583-605. PubMed ID: 23633042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact Equations for SIR Epidemics on Tree Graphs.
    Sharkey KJ; Kiss IZ; Wilkinson RR; Simon PL
    Bull Math Biol; 2015 Apr; 77(4):614-45. PubMed ID: 24347252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation.
    Stathopoulos V; Girolami MA
    Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1984):20110541. PubMed ID: 23277599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approximate Bayesian approach for estimation of the instantaneous reproduction number under misreported epidemic data.
    Gressani O; Faes C; Hens N
    Biom J; 2023 Aug; 65(6):e2200024. PubMed ID: 36639234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation for general birth-death processes.
    Crawford FW; Minin VN; Suchard MA
    J Am Stat Assoc; 2014 Apr; 109(506):730-747. PubMed ID: 25328261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HIV with contact tracing: a case study in approximate Bayesian computation.
    Blum MG; Tran VC
    Biostatistics; 2010 Oct; 11(4):644-60. PubMed ID: 20457785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laplacian-P-splines for Bayesian inference in the mixture cure model.
    Gressani O; Faes C; Hens N
    Stat Med; 2022 Jun; 41(14):2602-2626. PubMed ID: 35699121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inference for discretely observed stochastic kinetic networks with applications to epidemic modeling.
    Choi B; Rempala GA
    Biostatistics; 2012 Jan; 13(1):153-65. PubMed ID: 21835814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capturing the time-varying drivers of an epidemic using stochastic dynamical systems.
    Dureau J; Kalogeropoulos K; Baguelin M
    Biostatistics; 2013 Jul; 14(3):541-55. PubMed ID: 23292757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks.
    Ching WK; Zhang S; Ng MK; Akutsu T
    Bioinformatics; 2007 Jun; 23(12):1511-8. PubMed ID: 17463027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling under-reporting in epidemics.
    Gamado KM; Streftaris G; Zachary S
    J Math Biol; 2014 Sep; 69(3):737-65. PubMed ID: 23942791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.