These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
653 related articles for article (PubMed ID: 28741207)
21. In-situ lipid and fatty acid extraction methods to recover viable products from Nannochloropsis sp. Brennan B; Regan F Sci Total Environ; 2020 Dec; 748():142464. PubMed ID: 33113682 [TBL] [Abstract][Full Text] [Related]
22. Bioenergy application of Dunaliella salina SA 134 grown at various salinity levels for lipid production. Ahmed RA; He M; Aftab RA; Zheng S; Nagi M; Bakri R; Wang C Sci Rep; 2017 Aug; 7(1):8118. PubMed ID: 28808229 [TBL] [Abstract][Full Text] [Related]
23. Uptake of copper from acid mine drainage by the microalgae Nannochloropsis oculata. Martínez-Macias MDR; Correa-Murrieta MA; Villegas-Peralta Y; Dévora-Isiordia GE; Álvarez-Sánchez J; Saldivar-Cabrales J; Sánchez-Duarte RG Environ Sci Pollut Res Int; 2019 Mar; 26(7):6311-6318. PubMed ID: 30617876 [TBL] [Abstract][Full Text] [Related]
24. Orange Peel Waste as Feedstock for the Production of Glycerol-Free Biodiesel by the Microalgae Tardiolo G; Nicolò MS; Drago C; Genovese C; Fava G; Gugliandolo C; D'Antona N Molecules; 2023 Sep; 28(19):. PubMed ID: 37836689 [TBL] [Abstract][Full Text] [Related]
25. Two-Stage Cultivation of Dunaliella tertiolecta with Glycerol and Triethylamine for Lipid Accumulation: a Viable Way To Alleviate the Inhibitory Effect of Triethylamine on Biomass. Liang MH; Xue LL; Jiang JG Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30552184 [TBL] [Abstract][Full Text] [Related]
26. Lipid Production from Nannochloropsis. Ma XN; Chen TP; Yang B; Liu J; Chen F Mar Drugs; 2016 Mar; 14(4):. PubMed ID: 27023568 [TBL] [Abstract][Full Text] [Related]
27. Enhancement of lipid productivity by adopting multi-stage continuous cultivation strategy in Nannochloropsis gaditana. Sung MG; Lee B; Kim CW; Nam K; Chang YK Bioresour Technol; 2017 Apr; 229():20-25. PubMed ID: 28092732 [TBL] [Abstract][Full Text] [Related]
28. Influence of Carbohydrate Additives on the Growth Rate of Microalgae Biomass with an Increased Carbohydrate Content. Andreeva A; Budenkova E; Babich O; Sukhikh S; Dolganyuk V; Michaud P; Ivanova S Mar Drugs; 2021 Jul; 19(7):. PubMed ID: 34356806 [TBL] [Abstract][Full Text] [Related]
29. NMR characterization and evaluation of antibacterial and antiobiofilm activity of organic extracts from stationary phase batch cultures of five marine microalgae (Dunaliella sp., D. salina, Chaetoceros calcitrans, C. gracilis and Tisochrysis lutea). Iglesias MJ; Soengas R; Probert I; Guilloud E; Gourvil P; Mehiri M; López Y; Cepas V; Gutiérrez-Del-Río I; Redondo-Blanco S; Villar CJ; Lombó F; Soto S; Ortiz FL Phytochemistry; 2019 Aug; 164():192-205. PubMed ID: 31174083 [TBL] [Abstract][Full Text] [Related]
30. Growth and metabolic characteristics of oleaginous microalgal isolates from Nilgiri biosphere Reserve of India. Thangavel K; Radha Krishnan P; Nagaiah S; Kuppusamy S; Chinnasamy S; Rajadorai JS; Nellaiappan Olaganathan G; Dananjeyan B BMC Microbiol; 2018 Jan; 18(1):1. PubMed ID: 29433435 [TBL] [Abstract][Full Text] [Related]
31. Removal of copper improves the lipid content in Nannochloropsis oculata culture. Aguilar-Ruiz RJ; Martínez-Macias MDR; Sánchez-Machado DI; López-Cervantes J; Dévora-Isiordia GE; Nateras-Ramírez O Environ Sci Pollut Res Int; 2020 Dec; 27(35):44195-44204. PubMed ID: 32761347 [TBL] [Abstract][Full Text] [Related]
32. Development of direct conversion method for microalgal biodiesel production using wet biomass of Nannochloropsis salina. Kim TH; Suh WI; Yoo G; Mishra SK; Farooq W; Moon M; Shrivastav A; Park MS; Yang JW Bioresour Technol; 2015 Sep; 191():438-44. PubMed ID: 25827362 [TBL] [Abstract][Full Text] [Related]
33. A two-prong mutagenesis and adaptive evolution strategy to enhance the temperature tolerance and productivity of Nannochloropsis oculata. Arora N; Lo E; Philippidis GP Bioresour Technol; 2022 Nov; 364():128101. PubMed ID: 36241066 [TBL] [Abstract][Full Text] [Related]
34. Study of Morphological Features and Determination of the Fatty Acid Composition of the Microalgae Lipid Complex. Dolganyuk V; Andreeva A; Budenkova E; Sukhikh S; Babich O; Ivanova S; Prosekov A; Ulrikh E Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33227978 [TBL] [Abstract][Full Text] [Related]
35. Investigation of fatty acids accumulation in Nannochloropsis oculata for biodiesel application. Van Vooren G; Le Grand F; Legrand J; Cuiné S; Peltier G; Pruvost J Bioresour Technol; 2012 Nov; 124():421-32. PubMed ID: 23018107 [TBL] [Abstract][Full Text] [Related]
36. Enhancement of biomass and lipid productivity by overexpression of a bZIP transcription factor in Nannochloropsis salina. Kwon S; Kang NK; Koh HG; Shin SE; Lee B; Jeong BR; Chang YK Biotechnol Bioeng; 2018 Feb; 115(2):331-340. PubMed ID: 28976541 [TBL] [Abstract][Full Text] [Related]
37. Polar Lipid Profile of Nannochloropsis oculata Determined Using a Variety of Lipid Extraction Procedures. Servaes K; Maesen M; Prandi B; Sforza S; Elst K J Agric Food Chem; 2015 Apr; 63(15):3931-41. PubMed ID: 25801099 [TBL] [Abstract][Full Text] [Related]
38. TFA and EPA productivities of Nannochloropsis salina influenced by temperature and nitrate stimuli in turbidostatic controlled experiments. Hoffmann M; Marxen K; Schulz R; Vanselow KH Mar Drugs; 2010 Sep; 8(9):2526-45. PubMed ID: 20948904 [TBL] [Abstract][Full Text] [Related]