BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 28741348)

  • 1. Super-Resolution Far-Field Infrared Imaging by Photothermal Heterodyne Imaging.
    Li Z; Aleshire K; Kuno M; Hartland GV
    J Phys Chem B; 2017 Sep; 121(37):8838-8846. PubMed ID: 28741348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep image restoration for infrared photothermal heterodyne imaging.
    Zhang S; Kniazev K; Pavlovetc IM; Zhang S; Stevenson RL; Kuno M
    J Chem Phys; 2021 Dec; 155(21):214202. PubMed ID: 34879676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband near-field infrared spectromicroscopy using photothermal probes and synchrotron radiation.
    Donaldson PM; Kelley CS; Frogley MD; Filik J; Wehbe K; Cinque G
    Opt Express; 2016 Feb; 24(3):1852-64. PubMed ID: 26906764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photothermal heterodyne imaging of micron-sized objects.
    Bhandari J; Brown BS; Huffman JA; Hartland GV
    Appl Opt; 2023 Nov; 62(32):8491-8496. PubMed ID: 38037961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Infrared Photothermal Heterodyne Imaging to Characterize Micro- and Nanoplastics in Complex Environmental Matrices.
    Kniazev K; Pavlovetc IM; Zhang S; Kim J; Stevenson RL; Doudrick K; Kuno M
    Environ Sci Technol; 2021 Dec; 55(23):15891-15899. PubMed ID: 34747612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-sensitive lock-in detection for high-contrast mid-infrared photothermal imaging with sub-diffraction limited resolution.
    Samolis PD; Sander MY
    Opt Express; 2019 Feb; 27(3):2643-2655. PubMed ID: 30732299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaches to mid-infrared, super-resolution imaging and spectroscopy.
    Pavlovetc IM; Aleshire K; Hartland GV; Kuno M
    Phys Chem Chem Phys; 2020 Feb; 22(8):4313-4325. PubMed ID: 32064480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IR super-resolution microspectroscopy and its application to single cells.
    Sakai M; Inoue K; Fujii M
    Curr Pharm Biotechnol; 2013; 14(2):159-66. PubMed ID: 22356113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High resolution cellular imaging with nonlinear optical infrared microscopy.
    Lee ES; Lee JY
    Opt Express; 2011 Jan; 19(2):1378-84. PubMed ID: 21263679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Far-field midinfrared superresolution imaging and spectroscopy of single high aspect ratio gold nanowires.
    Aleshire K; Pavlovetc IM; Collette R; Kong XT; Rack PD; Zhang S; Masiello DJ; Camden JP; Hartland GV; Kuno M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2288-2293. PubMed ID: 31964821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super-resolution nonlinear photothermal microscopy.
    Nedosekin DA; Galanzha EI; Dervishi E; Biris AS; Zharov VP
    Small; 2014 Jan; 10(1):135-42. PubMed ID: 23864531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photothermal speckle modulation for noncontact materials characterization.
    Stolyarov AM; Sullenberger RM; Crompton DR; Jeys TH; Saar BG; Herzog WD
    Opt Lett; 2015 Dec; 40(24):5786-9. PubMed ID: 26670512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially-resolved individual particle spectroscopy using photothermal modulation of Mie scattering.
    Sullenberger RM; Redmond SM; Crompton D; Stolyarov AM; Herzog WD
    Opt Lett; 2017 Jan; 42(2):203-206. PubMed ID: 28081076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.
    Dazzi A; Prater CB
    Chem Rev; 2017 Apr; 117(7):5146-5173. PubMed ID: 27958707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-field infrared nanospectroscopy and super-resolution fluorescence microscopy enable complementary nanoscale analyses of lymphocyte nuclei.
    Ajaezi GC; Eisele M; Contu F; Lal S; Rangel-Pozzo A; Mai S; Gough KM
    Analyst; 2018 Dec; 143(24):5926-5934. PubMed ID: 30327804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic setup for submicrometer-resolution mapping of low-signal absorption and luminescence using photothermal heterodyne imaging and photon-counting techniques.
    Papernov S
    Appl Opt; 2019 May; 58(14):3908-3912. PubMed ID: 31158208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restoration and spectral recovery of mid-infrared chemical images.
    Mattson EC; Nasse MJ; Rak M; Gough KM; Hirschmugl CJ
    Anal Chem; 2012 Jul; 84(14):6173-80. PubMed ID: 22732086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution.
    Katzenmeyer AM; Holland G; Kjoller K; Centrone A
    Anal Chem; 2015 Mar; 87(6):3154-9. PubMed ID: 25707296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological applications of synchrotron radiation infrared spectromicroscopy.
    Marcelli A; Cricenti A; Kwiatek WM; Petibois C
    Biotechnol Adv; 2012; 30(6):1390-404. PubMed ID: 22401782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating fungal decomposition of organic matter at sub-micrometer spatial scales using optical photothermal infrared (O-PTIR) microspectroscopy.
    Op De Beeck M; Troein C; Peterson C; Tunlid A; Persson P
    Appl Environ Microbiol; 2024 Feb; 90(2):e0148923. PubMed ID: 38289133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.