These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28741463)

  • 1. Effect of Organic Solvents on Porcine Pancreatic Lipase Thermal Aggregation.
    Vaezzadeh M; Sabbaghian M; Yaghmaei P; Ebrahim-Habibi A
    Protein Pept Lett; 2017; 24(10):955-961. PubMed ID: 28741463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Dynamic Simulation of the Porcine Pancreatic Lipase in Non-aqueous Organic Solvents.
    Chen ZS; Wu YD; Hao JH; Liu YJ; He KP; Jiang WH; Xiong MJ; Lv YS; Cao SL; Zhu J
    Front Bioeng Biotechnol; 2020; 8():676. PubMed ID: 32766212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding thermal and organic solvent stability of thermoalkalophilic lipases: insights from computational predictions and experiments.
    Shehata M; Timucin E; Venturini A; Sezerman OU
    J Mol Model; 2020 May; 26(6):122. PubMed ID: 32383051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lid dynamics of porcine pancreatic lipase in non-aqueous solvents.
    Haque N; Prabhu NP
    Biochim Biophys Acta; 2016 Oct; 1860(10):2326-34. PubMed ID: 27155580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An organic solvent-tolerant alkaline lipase from cold-adapted Pseudomonas mandelii: cloning, expression, and characterization.
    Kim J; Jang SH; Lee C
    Biosci Biotechnol Biochem; 2013; 77(2):320-3. PubMed ID: 23391923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Organic Solvents on the Structure and Activity of a Minimal Lipase.
    Ingenbosch KN; Vieyto-Nuñez JC; Ruiz-Blanco YB; Mayer C; Hoffmann-Jacobsen K; Sanchez-Garcia E
    J Org Chem; 2022 Feb; 87(3):1669-1678. PubMed ID: 34706196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speciation of ferriprotoporphyrin IX in aqueous and mixed aqueous solution is controlled by solvent identity, pH, and salt concentration.
    Asher C; de Villiers KA; Egan TJ
    Inorg Chem; 2009 Aug; 48(16):7994-8003. PubMed ID: 19572726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of dimethylsulfoxide on hydrolysis of lipase.
    Tsuzuki W; Ue A; Kitamura Y
    Biosci Biotechnol Biochem; 2001 Sep; 65(9):2078-82. PubMed ID: 11676024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydration-aggregation pretreatment for drastically improving esterification activity of commercial lipases in non-aqueous media.
    Katayama M; Kuroiwa T; Suzuno K; Igusa A; Matsui T; Kanazawa A
    Enzyme Microb Technol; 2017 Oct; 105():30-37. PubMed ID: 28756858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of allantoin and dimethyl sulfoxide on the thermal aggregation of lysozyme.
    Nishinami S; Hirano A; Arakawa T; Shiraki K
    Int J Biol Macromol; 2018 Nov; 119():180-185. PubMed ID: 30009897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes of Thermostability, Organic Solvent, and pH Stability in
    Ishak SNH; Masomian M; Kamarudin NHA; Ali MSM; Leow TC; Rahman RNZRA
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31137725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deactivation and unfolding are uncoupled in a bacterial lipase exposed to heat, low pH and organic solvents.
    Invernizzi G; Casiraghi L; Grandori R; Lotti M
    J Biotechnol; 2009 Apr; 141(1-2):42-6. PubMed ID: 19428729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipase in aqueous-polar organic solvents: activity, structure, and stability.
    Kamal MZ; Yedavalli P; Deshmukh MV; Rao NM
    Protein Sci; 2013 Jul; 22(7):904-15. PubMed ID: 23625694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics of microbial lipases as determined from their intrinsic tryptophan fluorescence.
    Graupner M; Haalck L; Spener F; Lindner H; Glatter O; Paltauf F; Hermetter A
    Biophys J; 1999 Jul; 77(1):493-504. PubMed ID: 10388774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toluene promotes lid 2 interfacial activation of cold active solvent tolerant lipase from Pseudomonas fluorescens strain AMS8.
    Yaacob N; Mohamad Ali MS; Salleh AB; Rahman RNZRA; Leow ATC
    J Mol Graph Model; 2016 Jul; 68():224-235. PubMed ID: 27474867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DMSO enhanced conformational switch of an interfacial enzyme.
    Lindsay RJ; Johnson QR; Evangelista W; Nellas RB; Shen T
    Biopolymers; 2016 Dec; 105(12):864-72. PubMed ID: 27463323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipase-catalyzed synthesis of xylitol monoesters: solvent engineering approach.
    Castillo E; Pezzotti F; Navarro A; López-Munguía A
    J Biotechnol; 2003 May; 102(3):251-9. PubMed ID: 12730008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. α-chymotrypsin in water-acetone and water-dimethyl sulfoxide mixtures: Effect of preferential solvation and hydration.
    Sirotkin VA; Kuchierskaya AA
    Proteins; 2017 Oct; 85(10):1808-1819. PubMed ID: 28612358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning, Expression, and Characterization of a Cold-Active and Organic Solvent-Tolerant Lipase from Aeromicrobium sp. SCSIO 25071.
    Su H; Mai Z; Yang J; Xiao Y; Tian X; Zhang S
    J Microbiol Biotechnol; 2016 Jun; 26(6):1067-76. PubMed ID: 26975765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the loops in a lipase for stability in DMSO.
    Yedavalli P; Rao NM
    Protein Eng Des Sel; 2013 Apr; 26(4):317-24. PubMed ID: 23404771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.