These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28741760)

  • 1. Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees.
    Heide OM
    Physiol Plant; 1993 Aug; 88(4):531-540. PubMed ID: 28741760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens.
    Myking T; Heide OM
    Tree Physiol; 1995 Nov; 15(11):697-704. PubMed ID: 14965987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming.
    Heide OM
    Tree Physiol; 2003 Sep; 23(13):931-6. PubMed ID: 14532017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Olive Bud Dormancy Release Dynamics and Validation of Using Cuttings to Determine Chilling Requirement.
    Rubio-Valdés G; Cabello D; Rapoport HF; Rallo L
    Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effectiveness of winter temperatures for satisfying chilling requirements for reproductive budburst of red alder (
    Prevéy JS; Harrington CA
    PeerJ; 2018; 6():e5221. PubMed ID: 30280010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chilled to be forced: the best dose to wake up buds from winter dormancy.
    Baumgarten F; Zohner CM; Gessler A; Vitasse Y
    New Phytol; 2021 May; 230(4):1366-1377. PubMed ID: 33577087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased exposure to chilling advances the time to budburst in North American tree species.
    Nanninga C; Buyarski CR; Pretorius AM; Montgomery RA
    Tree Physiol; 2017 Dec; 37(12):1727-1738. PubMed ID: 29099953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The minimum temperature for budburst in Betula depends on the state of dormancy.
    Junttila O; Hänninen H
    Tree Physiol; 2012 Mar; 32(3):337-45. PubMed ID: 22391009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species.
    Harrington CA; Gould PJ
    Front Plant Sci; 2015; 6():120. PubMed ID: 25784922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of winter and spring temperatures on temperate tree budburst dates: results from an experimental climate manipulation.
    Fu YH; Campioli M; Deckmyn G; Janssens IA
    PLoS One; 2012; 7(10):e47324. PubMed ID: 23071786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insufficient Chilling Effects Vary among Boreal Tree Species and Chilling Duration.
    Man R; Lu P; Dang QL
    Front Plant Sci; 2017; 8():1354. PubMed ID: 28861091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control?
    Charrier G; Bonhomme M; Lacointe A; Améglio T
    Int J Biometeorol; 2011 Nov; 55(6):763-74. PubMed ID: 21805380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable water isotopes reveal the onset of bud dormancy in temperate trees, whereas water content is a better proxy for dormancy release.
    Walde MG; Wenden B; Chuine I; Gessler A; Saurer M; Vitasse Y
    Tree Physiol; 2024 Apr; 44(4):. PubMed ID: 38417929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frost hardening and dehardening potential in temperate trees from winter to budburst.
    Vitra A; Lenz A; Vitasse Y
    New Phytol; 2017 Oct; 216(1):113-123. PubMed ID: 28737248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring bud dormancy completion with a combined architectural and phenological analysis: the case of apple trees in contrasting winter temperature conditions.
    Schmitz JD; Guédon Y; Herter FG; Leite GB; Lauri PÉ
    Am J Bot; 2014 Mar; 101(3):398-407. PubMed ID: 24634439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Late autumn warming can both delay and advance spring budburst through contrasting effects on bud dormancy depth in Fagus sylvatica L.
    Garrigues R; Dox I; Flores O; Marchand LJ; Malyshev AV; Beemster G; AbdElgawad H; Janssens I; Asard H; Campioli M
    Tree Physiol; 2023 Oct; 43(10):1718-1730. PubMed ID: 37364048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Warming nondormant tree roots advances aboveground spring phenology in temperate trees.
    Malyshev AV; Blume-Werry G; Spiller O; Smiljanić M; Weigel R; Kolb A; Nze BY; Märker F; Sommer FCJ; Kinley K; Ziegler J; Pasang P; Mahara R; Joshi S; Heinsohn V; Kreyling J
    New Phytol; 2023 Dec; 240(6):2276-2287. PubMed ID: 37897071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Warming Events Advance or Delay Spring Phenology by Affecting Bud Dormancy Depth in Trees.
    Malyshev AV
    Front Plant Sci; 2020; 11():856. PubMed ID: 32655599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influences of daylength and temperature on the period of diapause and its ending process in dormant larvae of burnet moths (Lepidoptera, Zygaenidae).
    Wipking W
    Oecologia; 1995 May; 102(2):202-210. PubMed ID: 28306875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures.
    Viherä-Aarnio A; Sutinen S; Partanen J; Häkkinen R
    Tree Physiol; 2014 May; 34(5):547-56. PubMed ID: 24876293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.