These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28741760)

  • 21. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chilling outweighs photoperiod in preventing precocious spring development.
    Laube J; Sparks TH; Estrella N; Höfler J; Ankerst DP; Menzel A
    Glob Chang Biol; 2014 Jan; 20(1):170-82. PubMed ID: 24323535
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inter-Individual Budburst Variation in
    Malyshev AV; van der Maaten E; Garthen A; Maß D; Schwabe M; Kreyling J
    Front Plant Sci; 2022; 13():853521. PubMed ID: 35498678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dormancy release and flowering time in Ziziphus jujuba Mill., a "direct flowering" fruit tree, has a facultative requirement for chilling.
    Meir M; Ransbotyn V; Raveh E; Barak S; Tel-Zur N; Zaccai M
    J Plant Physiol; 2016 Mar; 192():118-27. PubMed ID: 26949231
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial Difference of Interactive Effect Between Temperature and Daylength on Ginkgo Budburst.
    Wu Z; Wang S; Fu YH; Gong Y; Lin CF; Zhao YP; Prevéy JS; Zohner C
    Front Plant Sci; 2022; 13():887226. PubMed ID: 35620689
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bud dormancy release in elm (Ulmus spp.) clones--a case study of photoperiod and temperature responses.
    Ghelardini L; Santini A; Black-Samuelsson S; Myking T; Falusi M
    Tree Physiol; 2010 Feb; 30(2):264-74. PubMed ID: 20022864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bud burst timing in Picea abies seedlings as affected by temperature during dormancy induction and mild spells during chilling.
    Granhus A; Fløistad IS; Søgaard G
    Tree Physiol; 2009 Apr; 29(4):497-503. PubMed ID: 19203964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Twilight far-red treatment advances leaf bud burst of silver birch (Betula pendula).
    Linkosalo T; Lechowicz MJ
    Tree Physiol; 2006 Oct; 26(10):1249-56. PubMed ID: 16815827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations.
    Linkosalo T; Lappalainen HK; Hari P
    Tree Physiol; 2008 Dec; 28(12):1873-82. PubMed ID: 19193570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species.
    Basler D; Körner C
    Tree Physiol; 2014 Apr; 34(4):377-88. PubMed ID: 24713858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Opposite effects of daylength and temperature on flowering and summer dormancy of Poa bulbosa.
    Ofir M; Kigel J
    Ann Bot; 2006 Apr; 97(4):659-66. PubMed ID: 16467351
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst.
    Caffarra A; Donnelly A
    Int J Biometeorol; 2011 Sep; 55(5):711-21. PubMed ID: 21113629
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting vegetative bud break in two arctic deciduous shrub species, Salix pulchra and Betula nana.
    Pop EW; Oberbauer SF; Starr G
    Oecologia; 2000 Aug; 124(2):176-184. PubMed ID: 28308177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Latitudinal clines in bud flush phenology reflect genetic variation in chilling requirements in balsam poplar, Populus balsamifera.
    Thibault E; Soolanayakanahally R; Keller SR
    Am J Bot; 2020 Nov; 107(11):1597-1605. PubMed ID: 33225462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Will loss of snow cover during climatic warming expose New Zealand alpine plants to increased frost damage?
    Bannister P; Maegli T; Dickinson KJ; Halloy SR; Knight A; Lord JM; Mark AF; Spencer KL
    Oecologia; 2005 Jun; 144(2):245-56. PubMed ID: 15891822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature efficiency for dormancy release in apricot varies when applied at different amounts of chill accumulation.
    Campoy JA; Ruiz D; Nortes MD; Egea J
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():28-35. PubMed ID: 22845025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Competitive success of southern populations of
    Taulavuori K; Taulavuori E; Saravesi K; Jylänki T; Kainulainen A; Pajala J; Markkola A; Suominen O; Saikkonen K
    Ecol Evol; 2017 Jun; 7(12):4507-4517. PubMed ID: 28649360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of dormancy progression and low-temperature response on changes in the sorbitol concentration in xylem sap of Japanese pear during winter season.
    Ito A; Sugiura T; Sakamoto D; Moriguchi T
    Tree Physiol; 2013 Apr; 33(4):398-408. PubMed ID: 23564693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shortened temperature-relevant period of spring leaf-out in temperate-zone trees.
    Fu YH; Geng X; Hao F; Vitasse Y; Zohner CM; Zhang X; Zhou X; Yin G; Peñuelas J; Piao S; Janssens IA
    Glob Chang Biol; 2019 Dec; 25(12):4282-4290. PubMed ID: 31368203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Waterlogging in late dormancy and the early growth phase affected root and leaf morphology in Betula pendula and Betula pubescens seedlings.
    Wang AF; Roitto M; Sutinen S; Lehto T; Heinonen J; Zhang G; Repo T
    Tree Physiol; 2016 Jan; 36(1):86-98. PubMed ID: 26420790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.