These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 28741781)

  • 1. Preferential photoinactivation of catalase and photoinhibition of photosystem II are common early symptoms under various osmotic and chemical stress conditions.
    Streb P; Michael-Knauf A; Feierabend J
    Physiol Plant; 1993 Aug; 88(4):590-598. PubMed ID: 28741781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoinactivation of Catalase Occurs under Both High- and Low-Temperature Stress Conditions and Accompanies Photoinhibition of Photosystem II.
    Feierabend J; Schaan C; Hertwig B
    Plant Physiol; 1992 Nov; 100(3):1554-61. PubMed ID: 16653157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased capacity for synthesis of the D1 protein and of catalase at low temperature in leaves of cold-hardened winter rye (Secale cereale L.).
    Shang W; Schmidt M; Feierabend J
    Planta; 2003 Mar; 216(5):865-73. PubMed ID: 12624774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions.
    Hertwig B; Streb P; Feierabend J
    Plant Physiol; 1992 Nov; 100(3):1547-53. PubMed ID: 16653156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoinactivation of photosystem II complexes and photoprotection by non-functional neighbours in Capsicum annuum L. leaves.
    Lee HY; Hong YN; Chow WS
    Planta; 2001 Feb; 212(3):332-42. PubMed ID: 11289597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes.
    Kornyeyev D; Logan BA; Payton P; Allen RD; Holaday AS
    Physiol Plant; 2001 Nov; 113(3):323-331. PubMed ID: 12060276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosystem II reaction centres stay intact during low temperature photoinhibition.
    Ottander C; Hundal T; Andersson B; Huner NP; Oquist G
    Photosynth Res; 1993 Feb; 35(2):191-200. PubMed ID: 24318686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves.
    Leipner J; Stamp P; Fracheboud Y
    Planta; 2000 May; 210(6):964-9. PubMed ID: 10872229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoinactivation of Photosystem II in wild-type and chlorophyll b-less barley leaves: which mechanism dominates depends on experimental circumstances.
    He J; Yang W; Qin L; Fan DY; Chow WS
    Photosynth Res; 2015 Dec; 126(2-3):399-407. PubMed ID: 26101037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organization and functionality of chlorophyll-protein complexes in thylakoid membranes isolated from Pb-treated Secale cereale.
    Janik E; Szczepaniuk J; Maksymiec W
    J Photochem Photobiol B; 2013 Aug; 125():98-104. PubMed ID: 23792911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosystem II Regulation and Dynamics of the Chloroplast D1 Protein in Arabidopsis Leaves during Photosynthesis and Photoinhibition.
    Russell AW; Critchley C; Robinson SA; Franklin LA; Seaton G; Chow WS; Anderson JM; Osmond CB
    Plant Physiol; 1995 Mar; 107(3):943-952. PubMed ID: 12228414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bacterial transgene for catalase protects translation of d1 protein during exposure of salt-stressed tobacco leaves to strong light.
    Al-Taweel K; Iwaki T; Yabuta Y; Shigeoka S; Murata N; Wadano A
    Plant Physiol; 2007 Sep; 145(1):258-65. PubMed ID: 17660354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode of translational activation of the catalase (cat1) mRNA of rye leaves (Secale cereale L.) and its control through blue light and reactive oxygen.
    Schmidt M; Grief J; Feierabend J
    Planta; 2006 Mar; 223(4):835-46. PubMed ID: 16341707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll.
    Pätsikkä E; Kairavuo M; Sersen F; Aro EM; Tyystjärvi E
    Plant Physiol; 2002 Jul; 129(3):1359-67. PubMed ID: 12114589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinactivation and recovery of photosystem II in Chenopodium album leaves grown at different levels of irradiance and nitrogen availability.
    Kato MC; Hikosaka K; Hirose T
    Funct Plant Biol; 2002 Jul; 29(7):787-795. PubMed ID: 32689526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpressed Superoxide Dismutase and Catalase Act Synergistically to Protect the Repair of PSII during Photoinhibition in Synechococcus elongatus PCC 7942.
    Sae-Tang P; Hihara Y; Yumoto I; Orikasa Y; Okuyama H; Nishiyama Y
    Plant Cell Physiol; 2016 Sep; 57(9):1899-907. PubMed ID: 27328698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium contributes to photoprotection and repair of photosystem II in peanut leaves during heat and high irradiance.
    Yang S; Wang F; Guo F; Meng JJ; Li XG; Wan SB
    J Integr Plant Biol; 2015 May; 57(5):486-95. PubMed ID: 25103557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage.
    Tikkanen M; Mekala NR; Aro EM
    Biochim Biophys Acta; 2014 Jan; 1837(1):210-5. PubMed ID: 24161359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Response of photosynthesis and antioxygenic enzymes in seedlings of three tropical forest tree species to different light environments].
    Guo X; Cao K; Xu Z
    Ying Yong Sheng Tai Xue Bao; 2004 Mar; 15(3):377-81. PubMed ID: 15227983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism in orange fruits is driven by photooxidative stress in the leaves.
    Poiroux-Gonord F; Santini J; Fanciullino AL; Lopez-Lauri F; Giannettini J; Sallanon H; Berti L; Urban L
    Physiol Plant; 2013 Oct; 149(2):175-87. PubMed ID: 23330573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.