BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 28741795)

  • 21. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis.
    Marty C; Pecquet C; Nivarthi H; El-Khoury M; Chachoua I; Tulliez M; Villeval JL; Raslova H; Kralovics R; Constantinescu SN; Plo I; Vainchenker W
    Blood; 2016 Mar; 127(10):1317-24. PubMed ID: 26608331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Upregulation of endogenous thrombopoietin receptor (MPL) with in vivo passage of calreticulin (CALR) mutant Ba/F3 cells, highlighting MPL as the requisite cytokine receptor for CALR mediated transformation.
    Brooks SA; Kim DM; Morse SJ; Nguyen QH; Craver BM; Lai HY; Fleischman AG
    Leuk Res; 2019 Jul; 82():11-14. PubMed ID: 31128484
    [No Abstract]   [Full Text] [Related]  

  • 23. Thrombopoietin receptor is required for the oncogenic function of CALR mutants.
    Nivarthi H; Chen D; Cleary C; Kubesova B; Jäger R; Bogner E; Marty C; Pecquet C; Vainchenker W; Constantinescu SN; Kralovics R
    Leukemia; 2016 Aug; 30(8):1759-63. PubMed ID: 26883579
    [No Abstract]   [Full Text] [Related]  

  • 24. Somatic mutations of calreticulin in myeloproliferative neoplasms.
    Klampfl T; Gisslinger H; Harutyunyan AS; Nivarthi H; Rumi E; Milosevic JD; Them NC; Berg T; Gisslinger B; Pietra D; Chen D; Vladimer GI; Bagienski K; Milanesi C; Casetti IC; Sant'Antonio E; Ferretti V; Elena C; Schischlik F; Cleary C; Six M; Schalling M; Schönegger A; Bock C; Malcovati L; Pascutto C; Superti-Furga G; Cazzola M; Kralovics R
    N Engl J Med; 2013 Dec; 369(25):2379-90. PubMed ID: 24325356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Progenitor genotyping reveals a complex clonal architecture in a subset of CALR-mutated myeloproliferative neoplasms.
    Martin S; Wright CM; Scott LM
    Br J Haematol; 2017 Apr; 177(1):55-66. PubMed ID: 28168700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CALR, JAK2, and MPL mutation profiles in patients with four different subtypes of myeloproliferative neoplasms: primary myelofibrosis, essential thrombocythemia, polycythemia vera, and myeloproliferative neoplasm, unclassifiable.
    Kim SY; Im K; Park SN; Kwon J; Kim JA; Lee DS
    Am J Clin Pathol; 2015 May; 143(5):635-44. PubMed ID: 25873496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oncogenic CALR mutant C-terminus mediates dual binding to the thrombopoietin receptor triggering complex dimerization and activation.
    Papadopoulos N; Nédélec A; Derenne A; Şulea TA; Pecquet C; Chachoua I; Vertenoeil G; Tilmant T; Petrescu AJ; Mazzucchelli G; Iorga BI; Vertommen D; Constantinescu SN
    Nat Commun; 2023 Apr; 14(1):1881. PubMed ID: 37019903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a Targeted Next-Generation Sequencing Assay to Detect Diagnostically Relevant Mutations of JAK2, CALR, and MPL in Myeloproliferative Neoplasms.
    Frawley T; O'Brien CP; Conneally E; Vandenberghe E; Percy M; Langabeer SE; Haslam K
    Genet Test Mol Biomarkers; 2018 Feb; 22(2):98-103. PubMed ID: 29323541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutant calreticulin: when a chaperone becomes intrusive.
    Cazzola M
    Blood; 2016 Mar; 127(10):1219-21. PubMed ID: 26965919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of the thrombopoietin receptor MPL in myeloproliferative neoplasms: recent findings and potential therapeutic applications.
    Vainchenker W; Plo I; Marty C; Varghese LN; Constantinescu SN
    Expert Rev Hematol; 2019 Jun; 12(6):437-448. PubMed ID: 31092065
    [No Abstract]   [Full Text] [Related]  

  • 31. Validation of a molecular diagnostic assay for CALR exon 9 indels in myeloproliferative neoplasms: identification of coexisting JAK2 and CALR mutations and a novel 9 bp deletion in CALR.
    Murugesan G; Guenther-Johnson J; Mularo F; Cook JR; Daly TM
    Int J Lab Hematol; 2016 Jun; 38(3):284-97. PubMed ID: 27018326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calreticulin mutations in myeloproliferative neoplasms.
    Shide K
    Int Rev Cell Mol Biol; 2021; 365():179-226. PubMed ID: 34756244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calreticulin exon 9 mutations in myeloproliferative neoplasms.
    Ha JS; Kim YK
    Ann Lab Med; 2015 Jan; 35(1):22-7. PubMed ID: 25553276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mutation profile of JAK2, MPL and CALR in Mexican patients with Philadelphia chromosome-negative myeloproliferative neoplasms.
    Labastida-Mercado N; Galindo-Becerra S; Garcés-Eisele J; Colunga-Pedraza P; Guzman-Olvera V; Reyes-Nuñez V; Ruiz-Delgado GJ; Ruiz-Argüelles GJ
    Hematol Oncol Stem Cell Ther; 2015 Mar; 8(1):16-21. PubMed ID: 25637689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The prevalence of CALR mutations in a cohort of patients with myeloproliferative neoplasms.
    Grinsztejn E; Percy MJ; McClenaghan D; Quintana M; Cuthbert RJ; McMullin MF
    Int J Lab Hematol; 2016 Feb; 38(1):102-6. PubMed ID: 26555437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CALR mutations screening in wild type JAK2(V617F) and MPL(W515K/L) Brazilian myeloproliferative neoplasm patients.
    Nunes DP; Lima LT; Chauffaille Mde L; Mitne-Neto M; Santos MT; Cliquet MG; Guerra-Shinohara EM
    Blood Cells Mol Dis; 2015 Oct; 55(3):236-40. PubMed ID: 26227853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changing concepts of diagnostic criteria of myeloproliferative disorders and the molecular etiology and classification of myeloproliferative neoplasms: from Dameshek 1950 to Vainchenker 2005 and beyond.
    Michiels JJ; Berneman Z; Schroyens W; De Raeve H
    Acta Haematol; 2015; 133(1):36-51. PubMed ID: 25116092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calreticulin Ins5 and Del52 mutations impair unfolded protein and oxidative stress responses in K562 cells expressing CALR mutants.
    Salati S; Genovese E; Carretta C; Zini R; Bartalucci N; Prudente Z; Pennucci V; Ruberti S; Rossi C; Rontauroli S; Enzo E; Calabresi L; Balliu M; Mannarelli C; Bianchi E; Guglielmelli P; Tagliafico E; Vannucchi AM; Manfredini R
    Sci Rep; 2019 Jul; 9(1):10558. PubMed ID: 31332222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immune Checkpoint Blockade Enhances Shared Neoantigen-Induced T-cell Immunity Directed against Mutated Calreticulin in Myeloproliferative Neoplasms.
    Cimen Bozkus C; Roudko V; Finnigan JP; Mascarenhas J; Hoffman R; Iancu-Rubin C; Bhardwaj N
    Cancer Discov; 2019 Sep; 9(9):1192-1207. PubMed ID: 31266769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A primer on genomic and epigenomic alterations in the myeloproliferative neoplasms.
    Rampal R; Levine RL
    Best Pract Res Clin Haematol; 2014 Jun; 27(2):83-93. PubMed ID: 25189720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.