BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28741846)

  • 1. Confinement of Reactive Oxygen Species in an Artificial-Enzyme-Based Hollow Structure To Eliminate Adverse Effects of Photocatalysis on UV Filters.
    Ju E; Dong K; Wang Z; Zhang Y; Cao F; Chen Z; Pu F; Ren J; Qu X
    Chemistry; 2017 Sep; 23(54):13518-13524. PubMed ID: 28741846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UVB irradiation-enhanced zinc oxide nanoparticles-induced DNA damage and cell death in mouse skin.
    Pal A; Alam S; Mittal S; Arjaria N; Shankar J; Kumar M; Singh D; Pandey AK; Ansari KM
    Mutat Res Genet Toxicol Environ Mutagen; 2016 Sep; 807():15-24. PubMed ID: 27542711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting free radicals in sunscreens exposed to UVA radiation using chemiluminescence.
    Millington KR; Osmond MJ; McCall MJ
    J Photochem Photobiol B; 2014 Apr; 133():27-38. PubMed ID: 24667184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ag
    Abadi PG; Shirazi FH; Joshaghani M; Moghimi HR
    Toxicol In Vitro; 2018 Aug; 50():318-327. PubMed ID: 29499336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UV irradiation-induced zinc dissociation from commercial zinc oxide sunscreen and its action in human epidermal keratinocytes.
    Martorano LM; Stork CJ; Li YV
    J Cosmet Dermatol; 2010 Dec; 9(4):276-86. PubMed ID: 21122045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZnO nanoparticles and organic chemical UV-filters are equally well tolerated by human immune cells.
    O'Keefe SJ; Feltis BN; Piva TJ; Turney TW; Wright PF
    Nanotoxicology; 2016 Nov; 10(9):1287-96. PubMed ID: 27345703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Versatile Sunscreen with Minimal ROS Damage and Low Permeability.
    Qiao Y; Dong H; Zhang X
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6217-6225. PubMed ID: 31920066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of UVA-induced ROS and sunscreen nanoparticle-generated ROS in human immune cells.
    Shen C; Turney TW; Piva TJ; Feltis BN; Wright PF
    Photochem Photobiol Sci; 2014 May; 13(5):781-8. PubMed ID: 24664431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of nitric oxide and reactive oxygen species production improves the ability of a sunscreen to protect from sunburn, immunosuppression and photocarcinogenesis.
    Russo PA; Halliday GM
    Br J Dermatol; 2006 Aug; 155(2):408-15. PubMed ID: 16882182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trade-offs in ecosystem impacts from nanomaterial versus organic chemical ultraviolet filters in sunscreens.
    Hanigan D; Truong L; Schoepf J; Nosaka T; Mulchandani A; Tanguay RL; Westerhoff P
    Water Res; 2018 Aug; 139():281-290. PubMed ID: 29656193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sunscreen enhancement of UV-induced reactive oxygen species in the skin.
    Hanson KM; Gratton E; Bardeen CJ
    Free Radic Biol Med; 2006 Oct; 41(8):1205-12. PubMed ID: 17015167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photodynamic therapy mediated antiproliferative activity of some metal-doped ZnO nanoparticles in human liver adenocarcinoma HepG2 cells under UV irradiation.
    Ismail AF; Ali MM; Ismail LF
    J Photochem Photobiol B; 2014 Sep; 138():99-108. PubMed ID: 24911277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution.
    Ma H; Wallis LK; Diamond S; Li S; Canas-Carrell J; Parra A
    Environ Pollut; 2014 Oct; 193():165-172. PubMed ID: 25033018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating an ex-vivo skin biointerface with electrochemical DNA biosensor for direct measurement of the protective effect of UV blocking agents.
    Mousavisani SZ; Raoof JB; Cheung KY; Camargo ARH; Ruzgas T; Turner APF; Mak WC
    Biosens Bioelectron; 2019 Mar; 128():159-165. PubMed ID: 30660931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UV and dark-triggered repetitive release and encapsulation of benzophenone-3 from biocompatible ZnO nanoparticles potential for skin protection.
    Huang X; Wang X; Wang S; Yang J; Zhong L; Pan J
    Nanoscale; 2013 Jun; 5(12):5596-601. PubMed ID: 23680782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on polymer-coated zinc oxide nanoparticles: UV-blocking efficacy and in vivo toxicity.
    Girigoswami K; Viswanathan M; Murugesan R; Girigoswami A
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():501-10. PubMed ID: 26249620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of UV-generated free radicals/reactive oxygen species (ROS) in skin.
    Herrling T; Jung K; Fuchs J
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Mar; 63(4):840-5. PubMed ID: 16543118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sunscreens containing the broad-spectrum UVA absorber, Mexoryl SX, prevent the cutaneous detrimental effects of UV exposure: a review of clinical study results.
    Fourtanier A; Moyal D; Seité S
    Photodermatol Photoimmunol Photomed; 2008 Aug; 24(4):164-74. PubMed ID: 18717957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Panthenol-stabilized cerium dioxide nanoparticles for cosmeceutic formulations against ROS-induced and UV-induced damage.
    Zholobak NM; Shcherbakov AB; Bogorad-Kobelska AS; Ivanova OS; Baranchikov AY; Spivak NY; Ivanov VK
    J Photochem Photobiol B; 2014 Jan; 130():102-8. PubMed ID: 24300997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benefit and risk of organic ultraviolet filters.
    Nohynek GJ; Schaefer H
    Regul Toxicol Pharmacol; 2001 Jun; 33(3):285-99. PubMed ID: 11407932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.