These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 28742020)

  • 21. Coordinated ATP hydrolysis by the Hsp90 dimer.
    Richter K; Muschler P; Hainzl O; Buchner J
    J Biol Chem; 2001 Sep; 276(36):33689-96. PubMed ID: 11441008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The conserved arginine 380 of Hsp90 is not a catalytic residue, but stabilizes the closed conformation required for ATP hydrolysis.
    Cunningham CN; Southworth DR; Krukenberg KA; Agard DA
    Protein Sci; 2012 Aug; 21(8):1162-71. PubMed ID: 22653663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visualizing the Dynamics of a Protein Folding Machinery: The Mechanism of Asymmetric ATP Processing in Hsp90 and its Implications for Client Remodelling.
    D'Annessa I; Moroni E; Colombo G
    J Mol Biol; 2021 Jan; 433(2):166728. PubMed ID: 33275968
    [TBL] [Abstract][Full Text] [Related]  

  • 24. C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle.
    Weikl T; Muschler P; Richter K; Veit T; Reinstein J; Buchner J
    J Mol Biol; 2000 Nov; 303(4):583-92. PubMed ID: 11054293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Hsp90 molecular chaperone: an open and shut case for treatment.
    Pearl LH; Prodromou C; Workman P
    Biochem J; 2008 Mar; 410(3):439-53. PubMed ID: 18290764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of ATP and p23 on the conformation of hsp90.
    Sullivan WP; Owen BA; Toft DO
    J Biol Chem; 2002 Nov; 277(48):45942-8. PubMed ID: 12324468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ATPase cycle of the mitochondrial Hsp90 analog Trap1.
    Leskovar A; Wegele H; Werbeck ND; Buchner J; Reinstein J
    J Biol Chem; 2008 Apr; 283(17):11677-88. PubMed ID: 18287101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a mitochondria-targeted Hsp90 inhibitor based on the crystal structures of human TRAP1.
    Lee C; Park HK; Jeong H; Lim J; Lee AJ; Cheon KY; Kim CS; Thomas AP; Bae B; Kim ND; Kim SH; Suh PG; Ryu JH; Kang BH
    J Am Chem Soc; 2015 Apr; 137(13):4358-67. PubMed ID: 25785725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solution structure of Plasmodium falciparum Hsp90 indicates a high flexible dimer.
    Silva NSM; Torricillas MS; Minari K; Barbosa LRS; Seraphim TV; Borges JC
    Arch Biochem Biophys; 2020 Sep; 690():108468. PubMed ID: 32679196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. O-GlcNAcylation suppresses TRAP1 activity and promotes mitochondrial respiration.
    Kim S; Backe SJ; Wengert LA; Johnson AE; Isakov RV; Bratslavsky MS; Woodford MR
    Cell Stress Chaperones; 2022 Sep; 27(5):573-585. PubMed ID: 35976490
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conserved conformational changes in the ATPase cycle of human Hsp90.
    Richter K; Soroka J; Skalniak L; Leskovar A; Hessling M; Reinstein J; Buchner J
    J Biol Chem; 2008 Jun; 283(26):17757-65. PubMed ID: 18400751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intra- and intermonomer interactions are required to synergistically facilitate ATP hydrolysis in Hsp90.
    Cunningham CN; Krukenberg KA; Agard DA
    J Biol Chem; 2008 Jul; 283(30):21170-8. PubMed ID: 18492664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones.
    Li J; Soroka J; Buchner J
    Biochim Biophys Acta; 2012 Mar; 1823(3):624-35. PubMed ID: 21951723
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A dynamic view of ATP-coupled functioning cycle of Hsp90 N-terminal domain.
    Zhang H; Zhou C; Chen W; Xu Y; Shi Y; Wen Y; Zhang N
    Sci Rep; 2015 Apr; 5():9542. PubMed ID: 25867902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The chaperone Hsp90: changing partners for demanding clients.
    Röhl A; Rohrberg J; Buchner J
    Trends Biochem Sci; 2013 May; 38(5):253-62. PubMed ID: 23507089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site.
    Harris SF; Shiau AK; Agard DA
    Structure; 2004 Jun; 12(6):1087-97. PubMed ID: 15274928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cross-monomer substrate contacts reposition the Hsp90 N-terminal domain and prime the chaperone activity.
    Street TO; Lavery LA; Verba KA; Lee CT; Mayer MP; Agard DA
    J Mol Biol; 2012 Jan; 415(1):3-15. PubMed ID: 22063096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis of the key residue W320 responsible for Hsp90 conformational change.
    Peng S; Matts RL; Deng J
    J Biomol Struct Dyn; 2023 Nov; 41(19):9745-9755. PubMed ID: 36373326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90.
    Hessling M; Richter K; Buchner J
    Nat Struct Mol Biol; 2009 Mar; 16(3):287-93. PubMed ID: 19234467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and mechanism of the Hsp90 molecular chaperone machinery.
    Pearl LH; Prodromou C
    Annu Rev Biochem; 2006; 75():271-94. PubMed ID: 16756493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.