BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28742920)

  • 1. Automated three-dimensional morphology-based clustering of human erythrocytes with regular shapes: stomatocytes, discocytes, and echinocytes.
    Ahmadzadeh E; Jaferzadeh K; Lee J; Moon I
    J Biomed Opt; 2017 Jul; 22(7):76015. PubMed ID: 28742920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional counting of morphologically normal human red blood cells via digital holographic microscopy.
    Yi F; Moon I; Lee YH
    J Biomed Opt; 2015 Jan; 20(1):016005. PubMed ID: 25567613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human red blood cell recognition enhancement with three-dimensional morphological features obtained by digital holographic imaging.
    Jaferzadeh K; Moon I
    J Biomed Opt; 2016 Dec; 21(12):126015. PubMed ID: 28006044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Enhanced Spring-Particle Model for Red Blood Cell Structural Mechanics: Application to the Stomatocyte-Discocyte-Echinocyte Transformation.
    Chen M; Boyle FJ
    J Biomech Eng; 2017 Dec; 139(12):. PubMed ID: 28813551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis.
    Liu R; Dey DK; Boss D; Marquet P; Javidi B
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jun; 28(6):1204-10. PubMed ID: 21643406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods.
    Moon I; Yi F; Lee YH; Javidi B; Boss D; Marquet P
    Opt Express; 2013 Dec; 21(25):30947-57. PubMed ID: 24514667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells.
    Moon I; Javidi B; Yi F; Boss D; Marquet P
    Opt Express; 2012 Apr; 20(9):10295-309. PubMed ID: 22535119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR q-space analysis of canonical shapes of human erythrocytes: stomatocytes, discocytes, spherocytes and echinocytes.
    Larkin TJ; Pages G; Chapman BE; Rasko JE; Kuchel PW
    Eur Biophys J; 2013 Jan; 42(1):3-16. PubMed ID: 22644501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical models of naturally "morphed" human erythrocytes: stomatocytes and echinocytes.
    Larkin TJ; Kuchel PW
    Bull Math Biol; 2010 Aug; 72(6):1323-33. PubMed ID: 20127191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new membrane formulation for modelling the flow of stomatocyte, discocyte, and echinocyte red blood cells.
    Karandeniya DMW; Holmes DW; Sauret E; Gu YT
    Biomech Model Mechanobiol; 2022 Jun; 21(3):899-917. PubMed ID: 35412191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep ensemble learning enables highly accurate classification of stored red blood cell morphology.
    Routt AH; Yang N; Piety NZ; Lu M; Shevkoplyas SS
    Sci Rep; 2023 Feb; 13(1):3152. PubMed ID: 36823298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying morphological heterogeneity: a study of more than 1 000 000 individual stored red blood cells.
    Piety NZ; Gifford SC; Yang X; Shevkoplyas SS
    Vox Sang; 2015 Oct; 109(3):221-30. PubMed ID: 25900518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell morphology-based classification of red blood cells using holographic imaging informatics.
    Yi F; Moon I; Javidi B
    Biomed Opt Express; 2016 Jun; 7(6):2385-99. PubMed ID: 27375953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D morphometry of red blood cells by digital holography.
    Memmolo P; Miccio L; Merola F; Gennari O; Netti PA; Ferraro P
    Cytometry A; 2014 Dec; 85(12):1030-6. PubMed ID: 25242067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic detection and characterization of quantitative phase images of thalassemic red blood cells using a mask region-based convolutional neural network.
    Lin YH; Liao KY; Sung KB
    J Biomed Opt; 2020 Nov; 25(11):. PubMed ID: 33188571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy.
    Jaferzadeh K; Moon I
    J Biomed Opt; 2015 Nov; 20(11):111218. PubMed ID: 26502322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lossless and lossy compression of quantitative phase images of red blood cells obtained by digital holographic imaging.
    Jaferzadeh K; Gholami S; Moon I
    Appl Opt; 2016 Dec; 55(36):10409-10416. PubMed ID: 28059271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer.
    Rappaz B; Barbul A; Emery Y; Korenstein R; Depeursinge C; Magistretti PJ; Marquet P
    Cytometry A; 2008 Oct; 73(10):895-903. PubMed ID: 18615599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of osmolality and solutes on the morphology of red blood cells according to three-dimensional refractive index tomography.
    Son M; Lee YS; Lee MJ; Park Y; Bae HR; Lee SY; Shin MG; Yang S
    PLoS One; 2021; 16(12):e0262106. PubMed ID: 34972199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated segmentation of multiple red blood cells with digital holographic microscopy.
    Yi F; Moon I; Javidi B; Boss D; Marquet P
    J Biomed Opt; 2013 Feb; 18(2):26006. PubMed ID: 23370481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.