These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 28743085)
1. Direct electrodeposition of Graphene enhanced conductive polymer on microelectrode for biosensing application. Wang MH; Ji BW; Gu XW; Tian HC; Kang XY; Yang B; Wang XL; Chen X; Li CY; Liu JQ Biosens Bioelectron; 2018 Jan; 99():99-107. PubMed ID: 28743085 [TBL] [Abstract][Full Text] [Related]
3. Electrodeposited PEDOT:Nafion Composite for Neural Recording and Stimulation. Carli S; Bianchi M; Zucchini E; Di Lauro M; Prato M; Murgia M; Fadiga L; Biscarini F Adv Healthc Mater; 2019 Oct; 8(19):e1900765. PubMed ID: 31489795 [TBL] [Abstract][Full Text] [Related]
4. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Wang W; Xu G; Cui XT; Sheng G; Luo X Biosens Bioelectron; 2014 Aug; 58():153-6. PubMed ID: 24632460 [TBL] [Abstract][Full Text] [Related]
5. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943 [TBL] [Abstract][Full Text] [Related]
6. Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes. Taylor IM; Robbins EM; Catt KA; Cody PA; Happe CL; Cui XT Biosens Bioelectron; 2017 Mar; 89(Pt 1):400-410. PubMed ID: 27268013 [TBL] [Abstract][Full Text] [Related]
7. Magnesium-based biodegradable microelectrodes for neural recording. Zhang C; Wen TH; Razak KA; Lin J; Xu C; Seo C; Villafana E; Jimenez H; Liu H Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110614. PubMed ID: 32204062 [TBL] [Abstract][Full Text] [Related]
8. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation. Kim R; Nam Y J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604 [TBL] [Abstract][Full Text] [Related]
10. Bionanotube/Poly(3,4-ethylenedioxythiophene) Nanohybrid as an Electrode for the Neural Interface and Dopamine Sensor. Reddy S; Xiao Q; Liu H; Li C; Chen S; Wang C; Chiu K; Chen N; Tu Y; Ramakrishna S; He L ACS Appl Mater Interfaces; 2019 May; 11(20):18254-18267. PubMed ID: 31034196 [TBL] [Abstract][Full Text] [Related]
11. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode. Sethuraman V; Muthuraja P; Anandha Raj J; Manisankar P Biosens Bioelectron; 2016 Oct; 84():112-9. PubMed ID: 26751827 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of free-standing multilayered graphene and poly(3,4-ethylenedioxythiophene) composite films with enhanced conductive and mechanical properties. Choi KS; Liu F; Choi JS; Seo TS Langmuir; 2010 Aug; 26(15):12902-8. PubMed ID: 20617852 [TBL] [Abstract][Full Text] [Related]
13. Carbon nanofiber-PEDOT composite films as novel microelectrode for neural interfaces and biosensing. Saunier V; Flahaut E; Blatché MC; Bergaud C; Maziz A Biosens Bioelectron; 2020 Oct; 165():112413. PubMed ID: 32729532 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical deposition of conductive polymers onto magnesium microwires for neural electrode applications. Zhang C; Driver N; Tian Q; Jiang W; Liu H J Biomed Mater Res A; 2018 Jul; 106(7):1887-1895. PubMed ID: 29520971 [TBL] [Abstract][Full Text] [Related]
15. In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording. Venkatraman S; Hendricks J; King ZA; Sereno AJ; Richardson-Burns S; Martin D; Carmena JM IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):307-16. PubMed ID: 21292598 [TBL] [Abstract][Full Text] [Related]
16. Gene-Embedded Nanostructural Biotic-Abiotic Optoelectrode Arrays Applied for Synchronous Brain Optogenetics and Neural Signal Recording. Huang WC; Chi HS; Lee YC; Lo YC; Liu TC; Chiang MY; Chen HY; Li SJ; Chen YY; Chen SY ACS Appl Mater Interfaces; 2019 Mar; 11(12):11270-11282. PubMed ID: 30844235 [TBL] [Abstract][Full Text] [Related]
17. Graphene oxide doped conducting polymer nanocomposite film for electrode-tissue interface. Tian HC; Liu JQ; Wei DX; Kang XY; Zhang C; Du JC; Yang B; Chen X; Zhu HY; Nuli YN; Yang CS Biomaterials; 2014 Feb; 35(7):2120-9. PubMed ID: 24333027 [TBL] [Abstract][Full Text] [Related]
18. Poly(3,4-ethylenedioxythiophene)/graphene oxide composite coating for electrode-tissue interface. Tian HC; Liu JQ; Kang XY; Wei DX; Zhang C; Du JC; Yang B; Chen X; Yang CS Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1571-4. PubMed ID: 25570271 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of Interface Characteristics of Neural Probe Based on Graphene, ZnO Nanowires, and Conducting Polymer PEDOT. Ryu M; Yang JH; Ahn Y; Sim M; Lee KH; Kim K; Lee T; Yoo SJ; Kim SY; Moon C; Je M; Choi JW; Lee Y; Jang JE ACS Appl Mater Interfaces; 2017 Mar; 9(12):10577-10586. PubMed ID: 28266832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]