These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 28743393)
1. Considerations for the use of ultra-high pressures in liquid chromatography for 2.1mm inner diameter columns. Broeckhoven K; Desmet G J Chromatogr A; 2017 Nov; 1523():183-192. PubMed ID: 28743393 [TBL] [Abstract][Full Text] [Related]
2. Extending the limits of operating pressure of narrow-bore column liquid chromatography instrumentation. Pauw RD; Degreef B; Ritchie H; Eeltink S; Desmet G; Broeckhoven K J Chromatogr A; 2014 Jun; 1347():56-62. PubMed ID: 24797393 [TBL] [Abstract][Full Text] [Related]
3. On the feasibility to conduct gradient liquid chromatography separations in narrow-bore columns at pressures up to 2000bar. De Pauw R; Swier T; Degreef B; Desmet G; Broeckhoven K J Chromatogr A; 2016 Nov; 1473():48-55. PubMed ID: 28029367 [TBL] [Abstract][Full Text] [Related]
4. Temperature effects in supercritical fluid chromatography: a trade-off between viscous heating and decompression cooling. De Pauw R; Choikhet K; Desmet G; Broeckhoven K J Chromatogr A; 2014 Oct; 1365():212-8. PubMed ID: 25262033 [TBL] [Abstract][Full Text] [Related]
5. Dependence of thermal mismatch broadening on column diameter in high-speed liquid chromatography at elevated temperatures. Thompson JD; Brown JS; Carr PW Anal Chem; 2001 Jul; 73(14):3340-7. PubMed ID: 11476234 [TBL] [Abstract][Full Text] [Related]
6. Exploring the speed-resolution limits of supercritical fluid chromatography at ultra-high pressures. Pauw R; Shoykhet Choikhet K; Desmet G; Broeckhoven K J Chromatogr A; 2014 Dec; 1374():247-253. PubMed ID: 25481350 [TBL] [Abstract][Full Text] [Related]
7. A multiscale modelling study on the sense and nonsense of thermal conductivity enhancement of liquid chromatography packings and other potential solutions for viscous heating effects. Deridder S; Smits W; Broeckhoven K; Desmet G J Chromatogr A; 2020 Jun; 1620():461022. PubMed ID: 32204881 [TBL] [Abstract][Full Text] [Related]
8. Development of a 1.0 mm inside diameter temperature-assisted focusing precolumn for use with 2.1 mm inside diameter columns. Groskreutz SR; Horner AR; Weber SG J Chromatogr A; 2017 Nov; 1523():193-203. PubMed ID: 28720224 [TBL] [Abstract][Full Text] [Related]
9. Prediction of overloaded concentration profiles under ultra-high-pressure liquid chromatographic conditions. Leśko M; Kaczmarski K; Samuelsson J; Fornstedt T J Chromatogr A; 2024 Mar; 1718():464704. PubMed ID: 38330725 [TBL] [Abstract][Full Text] [Related]
10. The impact of column inner diameter on chromatographic performance in temperature gradient liquid chromatography. Molander P; Olsen R; Lundanes E; Greibrokk T Analyst; 2003 Nov; 128(11):1341-5. PubMed ID: 14700227 [TBL] [Abstract][Full Text] [Related]
11. Ultra high pressure liquid chromatography. Column permeability and changes of the eluent properties. Gritti F; Guiochon G J Chromatogr A; 2008 Apr; 1187(1-2):165-79. PubMed ID: 18313063 [TBL] [Abstract][Full Text] [Related]
12. Intrinsic advantages of packed capillaries over narrow-bore columns in very high-pressure gradient liquid chromatography. Gritti F; McDonald T; Gilar M J Chromatogr A; 2016 Jun; 1451():107-119. PubMed ID: 27185055 [TBL] [Abstract][Full Text] [Related]
13. The Joule-Thomson coefficient as a criterion for efficient operating conditions in supercritical fluid chromatography. Poe DP; Helmueller S; Kobany S; Feldhacker H; Kaczmarski K J Chromatogr A; 2017 Jan; 1482():76-96. PubMed ID: 28043691 [TBL] [Abstract][Full Text] [Related]
14. Theoretical calculation of the retention enthalpy effect on the viscous heat dissipation band broadening in high performance liquid chromatography columns with a fixed wall temperature. Desmet G J Chromatogr A; 2006 May; 1116(1-2):89-96. PubMed ID: 16597444 [TBL] [Abstract][Full Text] [Related]
15. Computational fluid dynamics study of potential solutions to alleviate viscous heating band broadening in 2.1 millimeter liquid chromatography columns. Moussa A; Deridder S; Broeckhoven K; Desmet G J Chromatogr A; 2021 Sep; 1654():462452. PubMed ID: 34392122 [TBL] [Abstract][Full Text] [Related]
16. The current revolution in column technology: how it began, where is it going? Gritti F; Guiochon G J Chromatogr A; 2012 Mar; 1228():2-19. PubMed ID: 21872874 [TBL] [Abstract][Full Text] [Related]
17. Towards a solution for viscous heating in ultra-high pressure liquid chromatography using intermediate cooling. Broeckhoven K; Billen J; Verstraeten M; Choikhet K; Dittmann M; Rozing G; Desmet G J Chromatogr A; 2010 Mar; 1217(13):2022-31. PubMed ID: 20181348 [TBL] [Abstract][Full Text] [Related]
18. Theoretical and experimental impact of the bed aspect ratio on the axial dispersion coefficient of columns packed with 2.5 μm particles. Gritti F; Guiochon G J Chromatogr A; 2012 Nov; 1262():107-21. PubMed ID: 23010248 [TBL] [Abstract][Full Text] [Related]
19. Detailed computational fluid dynamics study of the parameters contributing to the viscous heating band broadening in liquid chromatography at pressures up to 2500 bar in 2.1 mm columns. Moussa A; Deridder S; Broeckhoven K; Desmet G J Chromatogr A; 2022 Jan; 1661():462683. PubMed ID: 34883357 [TBL] [Abstract][Full Text] [Related]
20. Influence of frictional heating on temperature gradients in ultra-high-pressure liquid chromatography on 2.1mm I.D. columns. de Villiers A; Lauer H; Szucs R; Goodall S; Sandra P J Chromatogr A; 2006 Apr; 1113(1-2):84-91. PubMed ID: 16476437 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]