BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 28743552)

  • 1. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes-A review.
    Liu R; Li L; Yin W; Xu D; Zang H
    Int J Pharm; 2017 Sep; 530(1-2):308-315. PubMed ID: 28743552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of suitable amounts of water in fluidized bed granulation of pharmaceutical formulations using corresponding values of components.
    Miwa A; Yajima T; Ikuta H; Makado K
    Int J Pharm; 2008 Mar; 352(1-2):202-8. PubMed ID: 18160237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applicability of near-infrared spectroscopy in the monitoring of film coating and curing process of the prolonged release coated pellets.
    Korasa K; Hudovornik G; Vrečer F
    Eur J Pharm Sci; 2016 Oct; 93():484-92. PubMed ID: 27562707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of fluidized bed granulation end point using near-infrared spectroscopy and phenomenological analysis.
    Findlay WP; Peck GR; Morris KR
    J Pharm Sci; 2005 Mar; 94(3):604-12. PubMed ID: 15666297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In line NIR quantification of film thickness on pharmaceutical pellets during a fluid bed coating process.
    Lee MJ; Seo DY; Lee HE; Wang IC; Kim WS; Jeong MY; Choi GJ
    Int J Pharm; 2011 Jan; 403(1-2):66-72. PubMed ID: 21035529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time monitoring of changes of adsorbed and crystalline water contents in tablet formulation powder containing theophylline anhydrate at various temperatures during agitated granulation by near-infrared spectroscopy.
    Otsuka M; Kanai Y; Hattori Y
    J Pharm Sci; 2014 Sep; 103(9):2924-2936. PubMed ID: 24832393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring granulation rate processes using three PAT tools in a pilot-scale fluidized bed.
    Tok AT; Goh X; Ng WK; Tan RB
    AAPS PharmSciTech; 2008; 9(4):1083-91. PubMed ID: 18850276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time process monitoring in a semi-continuous fluid-bed dryer - microwave resonance technology versus near-infrared spectroscopy.
    Peters J; Teske A; Taute W; Döscher C; Höft M; Knöchel R; Breitkreutz J
    Int J Pharm; 2018 Feb; 537(1-2):193-201. PubMed ID: 29288092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study on the applicability of multiple process analysers in the production of coated pellets.
    Korasa K; Vrečer F
    Int J Pharm; 2019 Apr; 560():261-272. PubMed ID: 30742986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Granulation of Yangxue Qingnao Granules in fluidized bed based on near-infrared spectroscopy].
    Zhang DW; Tian G; Xiong HS; Zhang Q; Zhang SN; Cai JY; Su J; Zhu YH; Yan KJ
    Zhongguo Zhong Yao Za Zhi; 2022 Jul; 47(14):3806-3815. PubMed ID: 35850838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inline acoustic monitoring to determine fluidized bed performance during pharmaceutical coating.
    Carter A; Briens L
    Int J Pharm; 2018 Oct; 549(1-2):293-298. PubMed ID: 30063939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-infrared chemical imaging (NIR-CI) as a process monitoring solution for a production line of roll compaction and tableting.
    Khorasani M; Amigo JM; Sun CC; Bertelsen P; Rantanen J
    Eur J Pharm Biopharm; 2015 Jun; 93():293-302. PubMed ID: 25917640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process analysis of fluidized bed granulation.
    Rantanen J; Jørgensen A; Räsänen E; Luukkonen P; Airaksinen S; Raiman J; Hänninen K; Antikainen O; Yliruusi J
    AAPS PharmSciTech; 2001 Oct; 2(4):21. PubMed ID: 14727858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A large-scale experimental comparison of batch and continuous technologies in pharmaceutical tablet manufacturing using ethenzamide.
    Matsunami K; Nagato T; Hasegawa K; Sugiyama H
    Int J Pharm; 2019 Mar; 559():210-219. PubMed ID: 30682448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Important parameters for the manufacture of slow-release matrix pellets with an aqueous dispersion of quaternary poly(meth)acrylates in the rotary fluidized bed.
    Radtke G; Knop K; Lippold BC
    Drug Dev Ind Pharm; 2006 Mar; 32(3):287-96. PubMed ID: 16556533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico modeling of in situ fluidized bed melt granulation.
    Aleksić I; Duriš J; Ilić I; Ibrić S; Parojčić J; Srčič S
    Int J Pharm; 2014 May; 466(1-2):21-30. PubMed ID: 24607215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time monitoring of particle size distribution in a continuous granulation and drying process by near infrared spectroscopy.
    Pauli V; Roggo Y; Kleinebudde P; Krumme M
    Eur J Pharm Biopharm; 2019 Aug; 141():90-99. PubMed ID: 31082510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spray granulation for drug formulation.
    Loh ZH; Er DZ; Chan LW; Liew CV; Heng PW
    Expert Opin Drug Deliv; 2011 Dec; 8(12):1645-61. PubMed ID: 22097906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining particle size and water content by near-infrared spectroscopy in the granulation of naproxen sodium.
    Bär D; Debus H; Brzenczek S; Fischer W; Imming P
    J Pharm Biomed Anal; 2018 Mar; 151():209-218. PubMed ID: 29353809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ monitoring of cocrystals in formulation development using low-frequency Raman spectroscopy.
    Otaki T; Tanabe Y; Kojima T; Miura M; Ikeda Y; Koide T; Fukami T
    Int J Pharm; 2018 May; 542(1-2):56-65. PubMed ID: 29524619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.