BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 28743639)

  • 1. Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy.
    Alcaraz J; Otero J; Jorba I; Navajas D
    Semin Cell Dev Biol; 2018 Jan; 73():71-81. PubMed ID: 28743639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing Micromechanical Properties of the Extracellular Matrix of Soft Tissues by Atomic Force Microscopy.
    Jorba I; Uriarte JJ; Campillo N; Farré R; Navajas D
    J Cell Physiol; 2017 Jan; 232(1):19-26. PubMed ID: 27163411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the elastic properties of extracellular matrix models by atomic force microscopy.
    Otero J; Navajas D; Alcaraz J
    Methods Cell Biol; 2020; 156():59-83. PubMed ID: 32222227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic properties of hydrogels and decellularized tissue sections used in mechanobiology studies probed by atomic force microscopy.
    Giménez A; Uriarte JJ; Vieyra J; Navajas D; Alcaraz J
    Microsc Res Tech; 2017 Jan; 80(1):85-96. PubMed ID: 27535539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear elasticity of the lung extracellular microenvironment is regulated by macroscale tissue strain.
    Jorba I; Beltrán G; Falcones B; Suki B; Farré R; García-Aznar JM; Navajas D
    Acta Biomater; 2019 Jul; 92():265-276. PubMed ID: 31085362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of biomechanical properties of cell lines on altered matrix stiffness using atomic force microscopy.
    Wala J; Das S
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1523-1536. PubMed ID: 31907681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic force microscope-enabled studies of integrin-extracellular matrix interactions in vascular smooth muscle and endothelial cells.
    Sun Z; Meininger GA
    Methods Mol Biol; 2011; 736():411-24. PubMed ID: 21660741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical and biomolecular characterization of extracellular matrix structures in human colon carcinomas.
    Brauchle E; Kasper J; Daum R; Schierbaum N; Falch C; Kirschniak A; Schäffer TE; Schenke-Layland K
    Matrix Biol; 2018 Aug; 68-69():180-193. PubMed ID: 29605717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force Sensing on Cells and Tissues by Atomic Force Microscopy.
    Holuigue H; Lorenc E; Chighizola M; Schulte C; Varinelli L; Deraco M; Guaglio M; Gariboldi M; Podestà A
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-mechanical mapping of interdependent cell and ECM mechanics by AFM force spectroscopy.
    Viji Babu PK; Rianna C; Mirastschijski U; Radmacher M
    Sci Rep; 2019 Aug; 9(1):12317. PubMed ID: 31444369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of local and global elastic moduli of valve interstitial cells cultured on soft substrates.
    Liu H; Sun Y; Simmons CA
    J Biomech; 2013 Jul; 46(11):1967-71. PubMed ID: 23746597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collective epithelial cell invasion overcomes mechanical barriers of collagenous extracellular matrix by a narrow tube-like geometry and MMP14-dependent local softening.
    Alcaraz J; Mori H; Ghajar CM; Brownfield D; Galgoczy R; Bissell MJ
    Integr Biol (Camb); 2011 Dec; 3(12):1153-66. PubMed ID: 21993836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decellularized Extracellular Matrix (ECM) as a Model to Study Fibrotic ECM Mechanobiology.
    Yeh CR; Bingham GC; Shetty J; Hu P; Barker TH
    Methods Mol Biol; 2021; 2299():237-261. PubMed ID: 34028748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging articular cartilage tissue using atomic force microscopy (AFM).
    Plodinec M; Loparic M; Aebi U
    Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.prot5499. PubMed ID: 20889696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale imaging and quantification of local proteolytic activity.
    Kusick S; Bertram H; Oberleithner H; Ludwig T
    J Cell Physiol; 2005 Sep; 204(3):767-74. PubMed ID: 15744770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of β1-integrin expression on chondrogenically differentiating human adipose-derived stem cells using atomic force microscopy.
    Quisenberry CR; Nazempour A; Van Wie BJ; Abu-Lail NI
    Biointerphases; 2016 Jun; 11(2):021005. PubMed ID: 27106564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the Nonreciprocal Micromechanics of Individual Cells and the Surrounding Matrix Within Living Tissues.
    Xu X; Li Z; Cai L; Calve S; Neu CP
    Sci Rep; 2016 Apr; 6():24272. PubMed ID: 27067516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy.
    Stolz M; Raiteri R; Daniels AU; VanLandingham MR; Baschong W; Aebi U
    Biophys J; 2004 May; 86(5):3269-83. PubMed ID: 15111440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and mechanical properties of the proliferative zone of the developing murine growth plate cartilage assessed by atomic force microscopy.
    Prein C; Warmbold N; Farkas Z; Schieker M; Aszodi A; Clausen-Schaumann H
    Matrix Biol; 2016 Mar; 50():1-15. PubMed ID: 26454027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring the micromechanical properties of embryonic tissues.
    Chevalier NR; Gazquez E; Dufour S; Fleury V
    Methods; 2016 Feb; 94():120-8. PubMed ID: 26255132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.