These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 28743760)
1. High growth temperatures and high soil nitrogen do not alter differences in CO Waring EF; Holaday AS Am J Bot; 2017 Jul; 104(7):999-1007. PubMed ID: 28743760 [TBL] [Abstract][Full Text] [Related]
2. Greater seasonal carbon gain across a broad temperature range contributes to the invasive potential of Phalaris arundinacea (Poaceae; reed canary grass) over the native sedge Carex stricta (Cyperaceae). He Z; Bentley LP; Holaday AS Am J Bot; 2011 Jan; 98(1):20-30. PubMed ID: 21613081 [TBL] [Abstract][Full Text] [Related]
3. Plasticity of nitrogen allocation in the leaves of the invasive wetland grass, Phalaris arundinacea and co-occurring Carex species determines the photosynthetic sensitivity to nitrogen availability. Holaday AS; Schwilk DW; Waring EF; Guvvala H; Griffin CM; Lewis OM J Plant Physiol; 2015 Apr; 177():20-29. PubMed ID: 25659333 [TBL] [Abstract][Full Text] [Related]
4. Comparative flooding tolerance of Typha latifolia and Phalaris arundinacea in wetland restoration: Insights from photosynthetic CO Jensen AB; Eller F; Sorrell BK Heliyon; 2024 Jan; 10(1):e23657. PubMed ID: 38187246 [TBL] [Abstract][Full Text] [Related]
5. Carbon gain, allocation and storage in rhizomes in response to elevated atmospheric carbon dioxide and nutrient supply in a perennial C Kinmonth-Schultz H; Kim SH Funct Plant Biol; 2011 Oct; 38(10):797-807. PubMed ID: 32480937 [TBL] [Abstract][Full Text] [Related]
6. Increased invasive potential of non-native Phragmites australis: elevated CO2 and temperature alleviate salinity effects on photosynthesis and growth. Eller F; Lambertini C; Nguyen LX; Brix H Glob Chang Biol; 2014 Feb; 20(2):531-43. PubMed ID: 23913622 [TBL] [Abstract][Full Text] [Related]
7. Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Dreyer E; Le Roux X; Montpied P; Daudet FA; Masson F Tree Physiol; 2001 Mar; 21(4):223-32. PubMed ID: 11276416 [TBL] [Abstract][Full Text] [Related]
8. Photosynthetic parameters of a sedge-grass marsh as a big-leaf: effect of plant species composition. Mejdová M; Dušek J; Foltýnová L; Macálková L; Čížková H Sci Rep; 2021 Feb; 11(1):3723. PubMed ID: 33580095 [TBL] [Abstract][Full Text] [Related]
9. Effects of soil temperature and elevated atmospheric CO2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings. Zhang S; Dang QL Tree Physiol; 2005 May; 25(5):523-31. PubMed ID: 15741153 [TBL] [Abstract][Full Text] [Related]
10. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment. Temperton VM; Grayston SJ; Jackson G; Barton CV; Millard P; Jarvis PG Tree Physiol; 2003 Oct; 23(15):1051-9. PubMed ID: 12975129 [TBL] [Abstract][Full Text] [Related]
11. Growth temperature can alter the temperature dependent stimulation of photosynthesis by elevated carbon dioxide in Albutilon theophrasti. Ziska LH Physiol Plant; 2001 Mar; 111(3):322-328. PubMed ID: 11240916 [TBL] [Abstract][Full Text] [Related]
12. Formation of tussocks by sedges: effects of hydroperiod and nutrients. Lawrence BA; Zedler JB Ecol Appl; 2011 Jul; 21(5):1745-59. PubMed ID: 21830715 [TBL] [Abstract][Full Text] [Related]
13. Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 concentration: interactions with shade and soil nitrogen. Kubiske ME; Zak DR; Pregitzer KS; Takeuchi Y Tree Physiol; 2002 Apr; 22(5):321-9. PubMed ID: 11960756 [TBL] [Abstract][Full Text] [Related]
14. Effects of elevated CO2 , nitrogen form and concentration on growth and photosynthesis of a fast- and slow-growing grass. Bowler JM; Press MC New Phytol; 1996 Mar; 132(3):391-401. PubMed ID: 26763635 [TBL] [Abstract][Full Text] [Related]
15. Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies). Stinziano JR; Hüner NP; Way DA Tree Physiol; 2015 Dec; 35(12):1303-13. PubMed ID: 26543154 [TBL] [Abstract][Full Text] [Related]
17. Seasonality of photosynthetic parameters in a multi-specific and vertically complex forest ecosystem in the Sierra Nevada of California. Misson L; Tu KP; Boniello RA; Goldstein AH Tree Physiol; 2006 Jun; 26(6):729-41. PubMed ID: 16510388 [TBL] [Abstract][Full Text] [Related]
18. Photosynthetic activity in relation to a gradient of leaf nitrogen content within a canopy of Siebold's beech and Japanese oak saplings under elevated ozone. Watanabe M; Hoshika Y; Inada N; Koike T Sci Total Environ; 2018 Sep; 636():1455-1462. PubMed ID: 29913605 [TBL] [Abstract][Full Text] [Related]
19. Effect of fruit load and girdling on leaf photosynthesis in Mangifera indica L. Urban L; Léchaudel M; Lu P J Exp Bot; 2004 Sep; 55(405):2075-85. PubMed ID: 15310823 [TBL] [Abstract][Full Text] [Related]
20. Gas exchange, growth, and defense responses of invasive Alliaria petiolata (Brassicaceae) and native Geum vernum (Rosaceae) to elevated atmospheric CO2 and warm spring temperatures. Anderson LJ; Cipollini D Am J Bot; 2013 Aug; 100(8):1544-54. PubMed ID: 23857735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]