BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28743806)

  • 1. The Stress-Inducible Peroxidase
    Linder RA; Greco JP; Seidl F; Matsui T; Ehrenreich IM
    G3 (Bethesda); 2017 Sep; 7(9):3177-3184. PubMed ID: 28743806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide construction of a series of designed segmental aneuploids in Saccharomyces cerevisiae.
    Natesuntorn W; Iwami K; Matsubara Y; Sasano Y; Sugiyama M; Kaneko Y; Harashima S
    Sci Rep; 2015 Jul; 5():12510. PubMed ID: 26224198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins.
    Kaya A; Gerashchenko MV; Seim I; Labarre J; Toledano MB; Gladyshev VN
    Proc Natl Acad Sci U S A; 2015 Aug; 112(34):10685-90. PubMed ID: 26261310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosome-Specific and Global Effects of Aneuploidy in Saccharomyces cerevisiae.
    Dodgson SE; Kim S; Costanzo M; Baryshnikova A; Morse DL; Kaiser CA; Boone C; Amon A
    Genetics; 2016 Apr; 202(4):1395-409. PubMed ID: 26837754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aneuploidy-induced proteotoxic stress can be effectively tolerated without dosage compensation, genetic mutations, or stress responses.
    Larrimore KE; Barattin-Voynova NS; Reid DW; Ng DTW
    BMC Biol; 2020 Sep; 18(1):117. PubMed ID: 32900371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosomal duplication is a transient evolutionary solution to stress.
    Yona AH; Manor YS; Herbst RH; Romano GH; Mitchell A; Kupiec M; Pilpel Y; Dahan O
    Proc Natl Acad Sci U S A; 2012 Dec; 109(51):21010-5. PubMed ID: 23197825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae.
    Tosato V; Sims J; West N; Colombin M; Bruschi CV
    Curr Genet; 2017 May; 63(2):281-292. PubMed ID: 27491680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered dosage of the Saccharomyces cerevisiae spindle pole body duplication gene, NDC1, leads to aneuploidy and polyploidy.
    Chial HJ; Giddings TH; Siewert EA; Hoyt MA; Winey M
    Proc Natl Acad Sci U S A; 1999 Aug; 96(18):10200-5. PubMed ID: 10468586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 2 micron plasmid of Saccharomyces cerevisiae: a miniaturized selfish genome with optimized functional competence.
    Chan KM; Liu YT; Ma CH; Jayaram M; Sau S
    Plasmid; 2013 Jul; 70(1):2-17. PubMed ID: 23541845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of the SUMO protease Ulp2 triggers a specific multichromosome aneuploidy.
    Ryu HY; Wilson NR; Mehta S; Hwang SS; Hochstrasser M
    Genes Dev; 2016 Aug; 30(16):1881-94. PubMed ID: 27585592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy.
    Chen G; Bradford WD; Seidel CW; Li R
    Nature; 2012 Jan; 482(7384):246-50. PubMed ID: 22286062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of genome duplication on phenotypes and industrial applications of Saccharomyces cerevisiae strains.
    Zhang K; Fang YH; Gao KH; Sui Y; Zheng DQ; Wu XC
    Appl Microbiol Biotechnol; 2017 Jul; 101(13):5405-5414. PubMed ID: 28429058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting Gene Expression Changes Accompanying a Ploidy-Based Phenotypic Switch.
    Cromie GA; Tan Z; Hays M; Jeffery EW; Dudley AM
    G3 (Bethesda); 2017 Jan; 7(1):233-246. PubMed ID: 27836908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Duplication processes in Saccharomyces cerevisiae haploid strains.
    Schacherer J; de Montigny J; Welcker A; Souciet JL; Potier S
    Nucleic Acids Res; 2005; 33(19):6319-26. PubMed ID: 16269823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear thioredoxin peroxidase Dot5 in Saccharomyces cerevisiae: roles in oxidative stress response and disruption of telomeric silencing.
    Izawa S; Kuroki N; Inoue Y
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):120-4. PubMed ID: 12925864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linkage mapping of yeast cross protection connects gene expression variation to a higher-order organismal trait.
    Stuecker TN; Scholes AN; Lewis JA
    PLoS Genet; 2018 Apr; 14(4):e1007335. PubMed ID: 29649251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic structural variation contributes to phenotypic change of industrial bioethanol yeast Saccharomyces cerevisiae.
    Zhang K; Zhang LJ; Fang YH; Jin XN; Qi L; Wu XC; Zheng DQ
    FEMS Yeast Res; 2016 Mar; 16(2):fov118. PubMed ID: 26733503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of Yap1p and Skn7p-mediated oxidative stress response in the defence of Saccharomyces cerevisiae against singlet oxygen.
    Brombacher K; Fischer BB; Rüfenacht K; Eggen RI
    Yeast; 2006 Jul; 23(10):741-50. PubMed ID: 16862604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved stress resistance and ethanol production by segmental haploidization of the diploid genome in Saccharomyces cerevisiae.
    Kaboli S; Miyamoto T; Sunada K; Sasano Y; Sugiyama M; Harashima S
    J Biosci Bioeng; 2016 Jun; 121(6):638-644. PubMed ID: 26690924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae.
    Zadorsky SP; Sopova YV; Andreichuk DY; Startsev VA; Medvedeva VP; Inge-Vechtomov SG
    Yeast; 2015 Jun; 32(6):479-97. PubMed ID: 25874850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.