BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28743841)

  • 1. Double Fano resonances in individual metallic nanostructure for high sensing sensitivity.
    Yan Z; Wen X; Gu P; Huang Z; Zhan P; Chen Z; Wang Z
    Nanotechnology; 2017 Jul; ():. PubMed ID: 28743841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double Fano resonances in an individual metallic nanostructure for high sensing sensitivity.
    Yan Z; Wen X; Gu P; Zhong H; Zhan P; Chen Z; Wang Z
    Nanotechnology; 2017 Oct; 28(47):475203. PubMed ID: 29086757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity.
    Wang J; Fan C; He J; Ding P; Liang E; Xue Q
    Opt Express; 2013 Jan; 21(2):2236-44. PubMed ID: 23389204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability.
    Lassiter JB; Sobhani H; Fan JA; Kundu J; Capasso F; Nordlander P; Halas NJ
    Nano Lett; 2010 Aug; 10(8):3184-9. PubMed ID: 20698635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance.
    Hao F; Sonnefraud Y; Van Dorpe P; Maier SA; Halas NJ; Nordlander P
    Nano Lett; 2008 Nov; 8(11):3983-8. PubMed ID: 18831572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed.
    Zhang S; Bao K; Halas NJ; Xu H; Nordlander P
    Nano Lett; 2011 Apr; 11(4):1657-63. PubMed ID: 21410217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linearly Tunable Fano Resonance Modes in a Plasmonic Nanostructure with a Waveguide Loaded with Two Rectangular Cavities Coupled by a Circular Cavity.
    Wang Q; Ouyang Z; Sun Y; Lin M; Liu Q
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31052439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly controllable double Fano resonances in plasmonic metasurfaces.
    Liu Z; Ye J
    Nanoscale; 2016 Oct; 8(40):17665-17674. PubMed ID: 27714114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Optical Properties of Ag-Al Nanosphere Heterodimer].
    Cheng L; Jiang YG; Huang LQ; Zhang Y; Wu J; Sun H; Liu Q; Wang J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3470-5. PubMed ID: 30198246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple Fano resonances with flexible tunablity based on symmetry-breaking resonators.
    Ren XB; Ren K; Zhang Y; Ming CG; Han Q
    Beilstein J Nanotechnol; 2019; 10():2459-2467. PubMed ID: 31921524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared plasmonic sensing and digital metasurface via double Fano resonances.
    Xu X; Luo XQ; Zhang J; Zhu W; Chen Z; Li TF; Liu WM; Wang XL
    Opt Express; 2022 Feb; 30(4):5879-5895. PubMed ID: 35209541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Fano resonances through coupling of dark modes in a dual-ring nanostructure.
    Grimmer M; Tao W; Fleischer M
    Opt Express; 2024 Jan; 32(2):1926-1940. PubMed ID: 38297734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Sensing and Switches Enriched by Tailorable Multiple Fano Resonances in Rotational Misalignment Metasurfaces.
    Xu X; Luo XQ; Liu Q; Li Y; Zhu W; Chen Z; Liu W; Wang XL
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Nanosensor Based on Fano Resonances Created by Changing the Deviation Angle of the Metal Core in a Plasmonic Cavity.
    Wang Q; Ouyang Z; Sun Y; Lin M; Liu Q; Zheng G; Fan J
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29596341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells.
    Chen J; Shen Q; Chen Z; Wang Q; Tang C; Wang Z
    J Chem Phys; 2012 Jun; 136(21):214703. PubMed ID: 22697562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fano resonances in plasmonic nanoparticle aggregates.
    Mirin NA; Bao K; Nordlander P
    J Phys Chem A; 2009 Apr; 113(16):4028-34. PubMed ID: 19371111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode.
    Zhang Y; Jia TQ; Zhang HM; Xu ZZ
    Opt Lett; 2012 Dec; 37(23):4919-21. PubMed ID: 23202090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-sensitivity plasmonic sensor by narrowing Fano resonances in a tilted metallic nano-groove array.
    Jia S; Li Z; Chen J
    Opt Express; 2021 Jul; 29(14):21358-21368. PubMed ID: 34265925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directional Fano resonance in a silicon nanosphere dimer.
    Yan J; Liu P; Lin Z; Wang H; Chen H; Wang C; Yang G
    ACS Nano; 2015 Mar; 9(3):2968-80. PubMed ID: 25683067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices.
    Forcherio GT; Blake P; DeJarnette D; Roper DK
    Opt Express; 2014 Jul; 22(15):17791-803. PubMed ID: 25089400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.