BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 28744093)

  • 1. Origins of the phototransduction delay as inferred from stochastic and deterministic simulation of the amplification cascade.
    Rotov AY; Astakhova LA; Firsov ML; Govardovskii VI
    Mol Vis; 2017; 23():416-430. PubMed ID: 28744093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling.
    Astakhova L; Firsov M; Govardovskii V
    Mol Vis; 2015; 21():244-63. PubMed ID: 25866462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of turn-offs of frog rod phototransduction cascade.
    Astakhova LA; Firsov ML; Govardovskii VI
    J Gen Physiol; 2008 Nov; 132(5):587-604. PubMed ID: 18955597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a unified model of vertebrate rod phototransduction.
    Hamer RD; Nicholas SC; Tranchina D; Lamb TD; Jarvinen JL
    Vis Neurosci; 2005; 22(4):417-36. PubMed ID: 16212700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative aspects of cGMP phosphodiesterase activation in carp rods and cones.
    Koshitani Y; Tachibanaki S; Kawamura S
    J Biol Chem; 2014 Jan; 289(5):2651-7. PubMed ID: 24344136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of low AIPL1 expression on phototransduction in rods.
    Makino CL; Wen XH; Michaud N; Peshenko IV; Pawlyk B; Brush RS; Soloviev M; Liu X; Woodruff ML; Calvert PD; Savchenko AB; Anderson RE; Fain GL; Li T; Sandberg MA; Dizhoor AM
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2185-94. PubMed ID: 16639031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Physiology of the visual retinal signal: From phototransduction to the visual cycle].
    Salesse C
    J Fr Ophtalmol; 2017 Mar; 40(3):239-250. PubMed ID: 28318721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low activation and fast inactivation of transducin in carp cones.
    Tachibanaki S; Yonetsu S; Fukaya S; Koshitani Y; Kawamura S
    J Biol Chem; 2012 Nov; 287(49):41186-94. PubMed ID: 23045532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery kinetics of human rod phototransduction inferred from the two-branched alpha-wave saturation function.
    Pepperberg DR; Birch DG; Hofmann KP; Hood DC
    J Opt Soc Am A Opt Image Sci Vis; 1996 Mar; 13(3):586-600. PubMed ID: 8627416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low amplification and fast visual pigment phosphorylation as mechanisms characterizing cone photoresponses.
    Tachibanaki S; Tsushima S; Kawamura S
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):14044-9. PubMed ID: 11707584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Difference in the gain in the phototransduction cascade between rods and cones in carp.
    Kawakami N; Kawamura S
    J Neurosci; 2014 Oct; 34(44):14682-6. PubMed ID: 25355220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 11-cis 13-demethylretinal on phototransduction in bleach-adapted rod and cone photoreceptors.
    Corson DW; Kefalov VJ; Cornwall MC; Crouch RK
    J Gen Physiol; 2000 Aug; 116(2):283-97. PubMed ID: 10919871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings.
    Nikonov SS; Kholodenko R; Lem J; Pugh EN
    J Gen Physiol; 2006 Apr; 127(4):359-74. PubMed ID: 16567464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse cone photoresponses obtained with electroretinogram from the isolated retina.
    Heikkinen H; Nymark S; Koskelainen A
    Vision Res; 2008 Jan; 48(2):264-72. PubMed ID: 18166210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tokay gecko photoreceptors achieve rod-like physiology with cone-like proteins.
    Zhang X; Wensel TG; Yuan C
    Photochem Photobiol; 2006; 82(6):1452-60. PubMed ID: 16553462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The limit of photoreceptor sensitivity: molecular mechanisms of dark noise in retinal cones.
    Holcman D; Korenbrot JI
    J Gen Physiol; 2005 Jun; 125(6):641-60. PubMed ID: 15928405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Ca++-dependent gain changes in PDE activation in vertebrate rod phototransduction.
    Hamer RD
    Mol Vis; 2000 Dec; 6():265-86. PubMed ID: 11139649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms characterizing cone photoresponses.
    Tachibanaki S; Shimauchi-Matsukawa Y; Arinobu D; Kawamura S
    Photochem Photobiol; 2007; 83(1):19-26. PubMed ID: 16706600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phototransduction in mouse rods and cones.
    Fu Y; Yau KW
    Pflugers Arch; 2007 Aug; 454(5):805-19. PubMed ID: 17226052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors.
    Lamb TD; Pugh EN
    J Physiol; 1992 Apr; 449():719-58. PubMed ID: 1326052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.