These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 28744305)

  • 1. MultiP-Apo: A Multilabel Predictor for Identifying Subcellular Locations of Apoptosis Proteins.
    Wang X; Li H; Wang R; Zhang Q; Zhang W; Gan Y
    Comput Intell Neurosci; 2017; 2017():9183796. PubMed ID: 28744305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mGOASVM: Multi-label protein subcellular localization based on gene ontology and support vector machines.
    Wan S; Mak MW; Kung SY
    BMC Bioinformatics; 2012 Nov; 13():290. PubMed ID: 23130999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MultiP-SChlo: multi-label protein subchloroplast localization prediction with Chou's pseudo amino acid composition and a novel multi-label classifier.
    Wang X; Zhang W; Zhang Q; Li GZ
    Bioinformatics; 2015 Aug; 31(16):2639-45. PubMed ID: 25900916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein subcellular localization prediction using multiple kernel learning based support vector machine.
    Hasan MA; Ahmad S; Molla MK
    Mol Biosyst; 2017 Mar; 13(4):785-795. PubMed ID: 28247893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilabel learning via random label selection for protein subcellular multilocations prediction.
    Wang X; Li GZ
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(2):436-46. PubMed ID: 23929867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of bacterial protein subcellular localization by incorporating various features into Chou's PseAAC and a backward feature selection approach.
    Li L; Yu S; Xiao W; Li Y; Li M; Huang L; Zheng X; Zhou S; Yang H
    Biochimie; 2014 Sep; 104():100-7. PubMed ID: 24929100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilabel learning for protein subcellular location prediction.
    Li GZ; Wang X; Hu X; Liu JM; Zhao RW
    IEEE Trans Nanobioscience; 2012 Sep; 11(3):237-43. PubMed ID: 22987129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mPLR-Loc: an adaptive decision multi-label classifier based on penalized logistic regression for protein subcellular localization prediction.
    Wan S; Mak MW; Kung SY
    Anal Biochem; 2015 Mar; 473():14-27. PubMed ID: 25449328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-location gram-positive and gram-negative bacterial protein subcellular localization using gene ontology and multi-label classifier ensemble.
    Wang X; Zhang J; Li GZ
    BMC Bioinformatics; 2015; 16 Suppl 12(Suppl 12):S1. PubMed ID: 26329681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins.
    Lin WZ; Fang JA; Xiao X; Chou KC
    Mol Biosyst; 2013 Apr; 9(4):634-44. PubMed ID: 23370050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MSLoc-DT: a new method for predicting the protein subcellular location of multispecies based on decision templates.
    Zhang SW; Liu YF; Yu Y; Zhang TH; Fan XN
    Anal Biochem; 2014 Mar; 449():164-71. PubMed ID: 24361712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC.
    Cheng X; Xiao X; Chou KC
    Gene; 2017 Sep; 628():315-321. PubMed ID: 28728979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of protein subcellular multisite localization using a new feature extraction method.
    Wang LY; Wang D; Chen YH
    Genet Mol Res; 2016 Sep; 15(3):. PubMed ID: 27706790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC.
    Cheng X; Xiao X; Chou KC
    Mol Biosyst; 2017 Aug; 13(9):1722-1727. PubMed ID: 28702580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ProLoc-GO: utilizing informative Gene Ontology terms for sequence-based prediction of protein subcellular localization.
    Huang WL; Tung CW; Ho SW; Hwang SF; Ho SY
    BMC Bioinformatics; 2008 Feb; 9():80. PubMed ID: 18241343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting protein subcellular location with network embedding and enrichment features.
    Pan X; Lu L; Cai YD
    Biochim Biophys Acta Proteins Proteom; 2020 Oct; 1868(10):140477. PubMed ID: 32593761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular location prediction of apoptosis proteins using two novel feature extraction methods based on evolutionary information and LDA.
    Du L; Meng Q; Chen Y; Wu P
    BMC Bioinformatics; 2020 May; 21(1):212. PubMed ID: 32448129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate prediction of multi-label protein subcellular localization through multi-view feature learning with RBRL classifier.
    Zhang Q; Zhang Y; Li S; Han Y; Jin S; Gu H; Yu B
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33537726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.
    Zhou H; Yang Y; Shen HB
    Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of rat protein subcellular localization with pseudo amino acid composition based on multiple sequential features.
    Shi R; Xu C
    Protein Pept Lett; 2011 Jun; 18(6):625-33. PubMed ID: 21309740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.