BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28744327)

  • 21. High miR-196a and low miR-367 cooperatively correlate with unfavorable prognosis of high-grade glioma.
    Guan Y; Chen L; Bao Y; Qiu B; Pang C; Cui R; Wang Y
    Int J Clin Exp Pathol; 2015; 8(6):6576-88. PubMed ID: 26261539
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of mitochondrial morphology and cell cycle by microRNA-214 targeting Mitofusin2.
    Bucha S; Mukhopadhyay D; Bhattacharyya NP
    Biochem Biophys Res Commun; 2015 Oct; 465(4):797-802. PubMed ID: 26307536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MicroRNA miR-196a controls melanoma-associated genes by regulating HOX-C8 expression.
    Mueller DW; Bosserhoff AK
    Int J Cancer; 2011 Sep; 129(5):1064-74. PubMed ID: 21077158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PARP-1 Inhibition Is Neuroprotective in the R6/2 Mouse Model of Huntington's Disease.
    Cardinale A; Paldino E; Giampà C; Bernardi G; Fusco FR
    PLoS One; 2015; 10(8):e0134482. PubMed ID: 26252217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation.
    Hecht E; Zago M; Sarill M; Rico de Souza A; Gomez A; Matthews J; Hamid Q; Eidelman DH; Baglole CJ
    Toxicol Appl Pharmacol; 2014 Nov; 280(3):511-25. PubMed ID: 25178717
    [TBL] [Abstract][Full Text] [Related]  

  • 26. miR-196a downregulation increases the expression of type I and III collagens in keloid fibroblasts.
    Kashiyama K; Mitsutake N; Matsuse M; Ogi T; Saenko VA; Ujifuku K; Utani A; Hirano A; Yamashita S
    J Invest Dermatol; 2012 Jun; 132(6):1597-604. PubMed ID: 22358059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PINK1-induced mitophagy promotes neuroprotection in Huntington's disease.
    Khalil B; El Fissi N; Aouane A; Cabirol-Pol MJ; Rival T; Liévens JC
    Cell Death Dis; 2015 Jan; 6(1):e1617. PubMed ID: 25611391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Circulating microRNAs in Huntington's disease: Emerging mediators in metabolic impairment.
    Díez-Planelles C; Sánchez-Lozano P; Crespo MC; Gil-Zamorano J; Ribacoba R; González N; Suárez E; Martínez-Descals A; Martínez-Camblor P; Álvarez V; Martín-Hernández R; Huerta-Ruíz I; González-García I; Cosgaya JM; Visioli F; Dávalos A; Iglesias-Gutiérrez E; Tomás-Zapico C
    Pharmacol Res; 2016 Jun; 108():102-110. PubMed ID: 27155059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MicroRNA-27a reduces mutant hutingtin aggregation in an in vitro model of Huntington's disease.
    Ban JJ; Chung JY; Lee M; Im W; Kim M
    Biochem Biophys Res Commun; 2017 Jun; 488(2):316-321. PubMed ID: 28495533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AMPK-α1 functions downstream of oxidative stress to mediate neuronal atrophy in Huntington's disease.
    Ju TC; Chen HM; Chen YC; Chang CP; Chang C; Chern Y
    Biochim Biophys Acta; 2014 Sep; 1842(9):1668-80. PubMed ID: 24946181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in Huntington's disease.
    Hsiao HY; Chen YC; Chen HM; Tu PH; Chern Y
    Hum Mol Genet; 2013 May; 22(9):1826-42. PubMed ID: 23372043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Altered selenium status in Huntington's disease: neuroprotection by selenite in the N171-82Q mouse model.
    Lu Z; Marks E; Chen J; Moline J; Barrows L; Raisbeck M; Volitakis I; Cherny RA; Chopra V; Bush AI; Hersch S; Fox JH
    Neurobiol Dis; 2014 Nov; 71():34-42. PubMed ID: 25014023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroRNA-196a targets annexin A1: a microRNA-mediated mechanism of annexin A1 downregulation in cancers.
    Luthra R; Singh RR; Luthra MG; Li YX; Hannah C; Romans AM; Barkoh BA; Chen SS; Ensor J; Maru DM; Broaddus RR; Rashid A; Albarracin CT
    Oncogene; 2008 Nov; 27(52):6667-78. PubMed ID: 18663355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington's disease.
    Nithianantharajah J; Hannan AJ
    Neuroscience; 2013 Oct; 251():66-74. PubMed ID: 22633949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression Profiles and Biological Roles of miR-196a in Swine.
    Ning X; Liu S; Qiu Y; Li G; Li Y; Li M; Yang G
    Genes (Basel); 2016 Jan; 7(2):. PubMed ID: 26805888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue.
    Kim YJ; Bae SW; Yu SS; Bae YC; Jung JS
    J Bone Miner Res; 2009 May; 24(5):816-25. PubMed ID: 19063684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. miR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells.
    Zhang J; Zheng F; Yu G; Yin Y; Lu Q
    Biochem Biophys Res Commun; 2013 Nov; 440(4):582-8. PubMed ID: 24120501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Altered microRNA expression in animal models of Huntington's disease and potential therapeutic strategies.
    Martinez B; Peplow PV
    Neural Regen Res; 2021 Nov; 16(11):2159-2169. PubMed ID: 33818488
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MicroRNA-196a/b Mitigate Renal Fibrosis by Targeting TGF-β Receptor 2.
    Meng J; Li L; Zhao Y; Zhou Z; Zhang M; Li D; Zhang CY; Zen K; Liu Z
    J Am Soc Nephrol; 2016 Oct; 27(10):3006-3021. PubMed ID: 26940097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study of plasma-derived miRNAs mimic differences in Huntington's disease brain.
    Hoss AG; Lagomarsino VN; Frank S; Hadzi TC; Myers RH; Latourelle JC
    Mov Disord; 2015 Dec; 30(14):1961-4. PubMed ID: 26573701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.