These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28744536)

  • 1. Chevrons, filaments, spinning clusters and phase coexistence: emergent dynamics of 2- and 3-d particle suspensions driven by multiaxial magnetic fields.
    Solis KJ; Martin JE
    Soft Matter; 2017 Aug; 13(34):5676-5683. PubMed ID: 28744536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driving self-assembly and emergent dynamics in colloidal suspensions by time-dependent magnetic fields.
    Martin JE; Snezhko A
    Rep Prog Phys; 2013 Dec; 76(12):126601. PubMed ID: 24188920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying vorticity in magnetic particle suspensions driven by symmetric and asymmetric multiaxial fields.
    Martin JE; Solis KJ
    Soft Matter; 2015 Sep; 11(36):7130-42. PubMed ID: 26252544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully alternating, triaxial electric or magnetic fields offer new routes to fluid vorticity.
    Martin JE; Solis KJ
    Soft Matter; 2015 Jan; 11(2):241-54. PubMed ID: 25358752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the origin of vorticity in magnetic particle suspensions subjected to triaxial fields.
    Martin JE
    Soft Matter; 2016 Jul; 12(25):5636-44. PubMed ID: 27263641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers.
    Snezhko A
    J Phys Condens Matter; 2011 Apr; 23(15):153101. PubMed ID: 21436505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Torque density measurements on vortex fluids produced by symmetry-breaking rational magnetic fields.
    Solis KJ; Martin JE
    Soft Matter; 2014 Sep; 10(33):6139-46. PubMed ID: 24912458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of emergent vortices in swarms of magnetic rollers.
    Kokot G; Snezhko A
    Nat Commun; 2018 Jun; 9(1):2344. PubMed ID: 29904114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembling particle clusters with incoherent 3D magnetic fields.
    Soheilian R; Abdi H; Maloney CE; Erb RM
    J Colloid Interface Sci; 2018 Mar; 513():400-408. PubMed ID: 29172119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active turbulence in a gas of self-assembled spinners.
    Kokot G; Das S; Winkler RG; Gompper G; Aranson IS; Snezhko A
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):12870-12875. PubMed ID: 29158382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiphase lattice Boltzmann method for particle suspensions.
    Joshi AS; Sun Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066703. PubMed ID: 19658621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guided Self-Assembly and Control of Vortices in Ensembles of Active Magnetic Rollers.
    Kokot G; Sokolov A; Snezhko A
    Langmuir; 2020 Jun; 36(25):6957-6962. PubMed ID: 31756110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model of dynamic self-assembly in ferromagnetic suspensions at liquid interfaces.
    Piet DL; Straube AV; Snezhko A; Aranson IS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033024. PubMed ID: 24125361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical properties of dilute hematite/silicone oil suspensions under low electric fields.
    Espin MJ; Delgado AV; DurĂ¡n JD
    J Colloid Interface Sci; 2005 Jul; 287(1):351-9. PubMed ID: 15914184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creating orbiting vorticity vectors in magnetic particle suspensions through field symmetry transitions-a route to multi-axis mixing.
    Martin JE; Solis KJ
    Soft Matter; 2016 Jan; 12(4):1021-31. PubMed ID: 26549438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical assemblies of superparamagnetic colloids in time-varying magnetic fields.
    Spatafora-Salazar A; Lobmeyer DM; Cunha LHP; Joshi K; Biswal SL
    Soft Matter; 2021 Feb; 17(5):1120-1155. PubMed ID: 33492321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetocapillary self-assemblies: Locomotion and micromanipulation along a liquid interface.
    Grosjean G; Hubert M; Vandewalle N
    Adv Colloid Interface Sci; 2018 May; 255():84-93. PubMed ID: 28754380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transportation, dispersion and ordering of dense colloidal assemblies by magnetic interfacial rotaphoresis.
    van Reenen A; de Jong AM; Prins MW
    Lab Chip; 2015 Jul; 15(13):2864-71. PubMed ID: 26023744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic interaction of Janus magnetic particles suspended in a viscous fluid.
    Seong Y; Kang TG; Hulsen MA; den Toonder JM; Anderson PD
    Phys Rev E; 2016 Feb; 93(2):022607. PubMed ID: 26986377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex magnetic fields breathe life into fluids.
    Solis KJ; Martin JE
    Soft Matter; 2014 Dec; 10(45):9136-42. PubMed ID: 25318082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.