These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 28744828)

  • 1. Review of numerical methods for simulation of mechanical heart valves and the potential for blood clotting.
    Zakaria MS; Ismail F; Tamagawa M; Aziz AFA; Wiriadidjaja S; Basri AA; Ahmad KA
    Med Biol Eng Comput; 2017 Sep; 55(9):1519-1548. PubMed ID: 28744828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of opening process in a bileaflet mechanical heart valve under pulsatile flow condition.
    Shi Y; Zhao Y; Yeo TJ; Hwang NH
    J Heart Valve Dis; 2003 Mar; 12(2):245-55. PubMed ID: 12701798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel computational model for the hemodynamics of bileaflet mechanical valves in the opening phase.
    Jahandardoost M; Fradet G; Mohammadi H
    Proc Inst Mech Eng H; 2015 Mar; 229(3):232-44. PubMed ID: 25833999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments.
    Ge L; Leo HL; Sotiropoulos F; Yoganathan AP
    J Biomech Eng; 2005 Oct; 127(5):782-97. PubMed ID: 16248308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry.
    Ge L; Jones SC; Sotiropoulos F; Healy TM; Yoganathan AP
    J Biomech Eng; 2003 Oct; 125(5):709-18. PubMed ID: 14618930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical and experimental investigations of pulsatile blood flow pattern through a dysfunctional mechanical heart valve.
    Smadi O; Hassan I; Pibarot P; Kadem L
    J Biomech; 2010 May; 43(8):1565-72. PubMed ID: 20188372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient, three-dimensional flow field simulation through a mechanical, trileaflet heart valve prosthesis.
    Kaufmann TA; Linde T; Cuenca-Navalon E; Schmitz C; Hormes M; Schmitz-Rode T; Steinseifer U
    ASAIO J; 2011; 57(4):278-82. PubMed ID: 21642841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bubble formation on St. Jude Medical mechanical heart valves: an in-vitro study.
    Milo S; Gutfinger C; Chu GY; Gharib M
    J Heart Valve Dis; 2003 May; 12(3):406-10. PubMed ID: 12803343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical analysis on the hemodynamics and leaflet dynamics in a bileaflet mechanical heart valve using a fluid-structure interaction method.
    Choi CR; Kim CN
    ASAIO J; 2009; 55(5):428-37. PubMed ID: 19730001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimentally derived stress resultant shell model for heart valve dynamic simulations.
    Kim H; Chandran KB; Sacks MS; Lu J
    Ann Biomed Eng; 2007 Jan; 35(1):30-44. PubMed ID: 17089074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Hemodynamic Investigation of Bileaflet and Trileaflet Mechanical Heart Valves.
    Kuan YH; Nguyen VT; Kabinejadian F; Leo HL
    J Heart Valve Dis; 2015 May; 24(3):393-403. PubMed ID: 26901919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The upstream boundary condition influences the leaflet opening dynamics in the numerical FSI simulation of an aortic BMHV.
    Annerel S; Degroote J; Claessens T; Segers P; Verdonck P; Vierendeels J
    Int J Numer Method Biomed Eng; 2012; 28(6-7):745-60. PubMed ID: 25364849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of enzyme activated milk for in vitro simulation of prosthetic valve thrombosis.
    Keggen LA; Black MM; Lawford PV; Hose DR; Strachan JR
    J Heart Valve Dis; 1996 Jan; 5(1):74-83. PubMed ID: 8834729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses.
    Ge L; Dasi LP; Sotiropoulos F; Yoganathan AP
    Ann Biomed Eng; 2008 Feb; 36(2):276-97. PubMed ID: 18049902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical dye washout method as a tool for characterizing the heart valve flow: study of three standard mechanical heart valves.
    Goubergrits L; Kertzscher U; Affeld K; Petz C; Stalling D; Hege HC
    ASAIO J; 2008; 54(1):50-7. PubMed ID: 18204316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube.
    Taber LA; Zhang J; Perucchio R
    J Biomech Eng; 2007 Jun; 129(3):441-9. PubMed ID: 17536912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study on the Reynolds and viscous shear stress of bileaflet mechanical heart valves in a pneumatic ventricular assist device.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2009; 55(4):348-54. PubMed ID: 19521236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of laser Doppler anemometry and hot-film anemometry for visualizing velocity fields downstream of different heart valves in a pulsatile mock circulation.
    Hasenkam JM; Giersiepen M; Schindehütte H; Reul H; Gormsen J; Paulsen PK
    Life Support Syst; 1985; 3 Suppl 1():162-6. PubMed ID: 2959821
    [No Abstract]   [Full Text] [Related]  

  • 19. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model.
    Dumont K; Vierendeels J; Kaminsky R; van Nooten G; Verdonck P; Bluestein D
    J Biomech Eng; 2007 Aug; 129(4):558-65. PubMed ID: 17655477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of an in-vitro thrombosis assessment procedure by application to the Medtronic Parallel and St. Jude Medical valves.
    Martin AJ; Christy JR
    J Heart Valve Dis; 2004 Jul; 13(4):667-75. PubMed ID: 15311876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.