These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 28744968)
1. Benchmark problems for numerical treatment of backflow at open boundaries. Bertoglio C; Caiazzo A; Bazilevs Y; Braack M; Esmaily M; Gravemeier V; L Marsden A; Pironneau O; E Vignon-Clementel I; A Wall W Int J Numer Method Biomed Eng; 2018 Feb; 34(2):. PubMed ID: 28744968 [TBL] [Abstract][Full Text] [Related]
2. Modern discontinuous Galerkin methods for the simulation of transitional and turbulent flows in biomedical engineering: A comprehensive LES study of the FDA benchmark nozzle model. Fehn N; Wall WA; Kronbichler M Int J Numer Method Biomed Eng; 2019 Dec; 35(12):e3228. PubMed ID: 31232525 [TBL] [Abstract][Full Text] [Related]
3. A verified and validated moving domain computational fluid dynamics solver with applications to cardiovascular flows. Kjeldsberg HA; Sundnes J; Valen-Sendstad K Int J Numer Method Biomed Eng; 2023 Jun; 39(6):e3703. PubMed ID: 37020156 [TBL] [Abstract][Full Text] [Related]
4. Large eddy simulation of the FDA benchmark nozzle for a Reynolds number of 6500. Janiga G Comput Biol Med; 2014 Apr; 47():113-9. PubMed ID: 24561349 [TBL] [Abstract][Full Text] [Related]
5. Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves. Colagrossi A; Souto-Iglesias A; Antuono M; Marrone S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023302. PubMed ID: 23496634 [TBL] [Abstract][Full Text] [Related]
6. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries. Silva G Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480 [TBL] [Abstract][Full Text] [Related]
7. Flow stabilization with active hydrodynamic cloaks. Urzhumov YA; Smith DR Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056313. PubMed ID: 23214882 [TBL] [Abstract][Full Text] [Related]
8. Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD. Feng R; Xenos M; Girdhar G; Kang W; Davenport JW; Deng Y; Bluestein D Biomech Model Mechanobiol; 2012 Jan; 11(1-2):119-29. PubMed ID: 21369918 [TBL] [Abstract][Full Text] [Related]
9. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries. Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909 [TBL] [Abstract][Full Text] [Related]
10. Effect of wettability on two-phase quasi-static displacement: Validation of two pore scale modeling approaches. Verma R; Icardi M; Prodanović M J Contam Hydrol; 2018 May; 212():115-133. PubMed ID: 29395376 [TBL] [Abstract][Full Text] [Related]
11. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation. Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615 [TBL] [Abstract][Full Text] [Related]
13. Kinetically reduced local Navier-Stokes equations: an alternative approach to hydrodynamics. Karlin IV; Tomboulides AG; Frouzakis CE; Ansumali S Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):035702. PubMed ID: 17025701 [TBL] [Abstract][Full Text] [Related]
14. Instabilities in granular binary mixtures at moderate densities. Mitrano PP; Garzó V; Hrenya CM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):020201. PubMed ID: 25353402 [TBL] [Abstract][Full Text] [Related]
15. Investigation of the backflows and outlet boundary conditions for computations of the patient-specific aortic valve flows. Staškūnienė M; Kačeniauskas A; Maknickas A; Starikovičius V; Stupak E; Pacevič R Technol Health Care; 2018; 26(S2):553-563. PubMed ID: 29843278 [TBL] [Abstract][Full Text] [Related]
16. Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity. Kim CS; Kiris C; Kwak D; David T J Biomech Eng; 2006 Apr; 128(2):194-202. PubMed ID: 16524330 [TBL] [Abstract][Full Text] [Related]
17. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. Hariharan P; Giarra M; Reddy V; Day SW; Manning KB; Deutsch S; Stewart SF; Myers MR; Berman MR; Burgreen GW; Paterson EG; Malinauskas RA J Biomech Eng; 2011 Apr; 133(4):041002. PubMed ID: 21428676 [TBL] [Abstract][Full Text] [Related]
18. Tuning a lattice-Boltzmann model for applications in computational hemodynamics. Golbert DR; Blanco PJ; Clausse A; Feijóo RA Med Eng Phys; 2012 Apr; 34(3):339-49. PubMed ID: 21880536 [TBL] [Abstract][Full Text] [Related]
19. On the suitability of steady RANS CFD for forced mixing ventilation at transitional slot Reynolds numbers. van Hooff T; Blocken B; van Heijst GJ Indoor Air; 2013 Jun; 23(3):236-49. PubMed ID: 23094648 [TBL] [Abstract][Full Text] [Related]
20. A comparative study of manhole hydraulics using stereoscopic PIV and different RANS models. Beg MNA; Carvalho RF; Tait S; Brevis W; Rubinato M; Schellart A; Leandro J Water Sci Technol; 2017 Apr; 2017(1):87-98. PubMed ID: 29698224 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]