BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

856 related articles for article (PubMed ID: 28745223)

  • 21. A Cephalosporin Prochelator Inhibits New Delhi Metallo-β-lactamase 1 without Removing Zinc.
    Jackson AC; Zaengle-Barone JM; Puccio EA; Franz KJ
    ACS Infect Dis; 2020 May; 6(5):1264-1272. PubMed ID: 32298084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and biochemical analysis of the metallo-β-lactamase L1 from emerging pathogen Stenotrophomonas maltophilia revealed the subtle but distinct di-metal scaffold for catalytic activity.
    Kim Y; Maltseva N; Wilamowski M; Tesar C; Endres M; Joachimiak A
    Protein Sci; 2020 Mar; 29(3):723-743. PubMed ID: 31846104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily.
    Bebrone C
    Biochem Pharmacol; 2007 Dec; 74(12):1686-701. PubMed ID: 17597585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Avibactam and inhibitor-resistant SHV β-lactamases.
    Winkler ML; Papp-Wallace KM; Taracila MA; Bonomo RA
    Antimicrob Agents Chemother; 2015 Jul; 59(7):3700-9. PubMed ID: 25691639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three decades of the class A beta-lactamase acyl-enzyme.
    Fisher JF; Mobashery S
    Curr Protein Pept Sci; 2009 Oct; 10(5):401-7. PubMed ID: 19538154
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beta-lactamase inhibitors: the story so far.
    Pérez-Llarena FJ; Bou G
    Curr Med Chem; 2009; 16(28):3740-65. PubMed ID: 19747143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antibiotic recognition by binuclear metallo-beta-lactamases revealed by X-ray crystallography.
    Spencer J; Read J; Sessions RB; Howell S; Blackburn GM; Gamblin SJ
    J Am Chem Soc; 2005 Oct; 127(41):14439-44. PubMed ID: 16218639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A DNA aptamer reveals an allosteric site for inhibition in metallo-β-lactamases.
    Khan NH; Bui AA; Xiao Y; Sutton RB; Shaw RW; Wylie BJ; Latham MP
    PLoS One; 2019; 14(4):e0214440. PubMed ID: 31009467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. OP0595, a new diazabicyclooctane: mode of action as a serine β-lactamase inhibitor, antibiotic and β-lactam 'enhancer'.
    Morinaka A; Tsutsumi Y; Yamada M; Suzuki K; Watanabe T; Abe T; Furuuchi T; Inamura S; Sakamaki Y; Mitsuhashi N; Ida T; Livermore DM
    J Antimicrob Chemother; 2015 Oct; 70(10):2779-86. PubMed ID: 26089439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent research and development of NDM-1 inhibitors.
    Wang T; Xu K; Zhao L; Tong R; Xiong L; Shi J
    Eur J Med Chem; 2021 Nov; 223():113667. PubMed ID: 34225181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescein-labeled beta-lactamase mutant for high-throughput screening of bacterial beta-lactamases against beta-lactam antibiotics.
    Chan PH; Chan KC; Liu HB; Chung WH; Leung YC; Wong KY
    Anal Chem; 2005 Aug; 77(16):5268-76. PubMed ID: 16097768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent advances in the discovery of metallo-β-lactamase inhibitors for β-lactam antibiotic-resistant reversing agents.
    Guo Z; Ma S
    Curr Drug Targets; 2014; 15(7):689-702. PubMed ID: 24666360
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural Study of Metal Binding and Coordination in Ancient Metallo-β-Lactamase PNGM-1 Variants.
    Park YS; Kim TY; Park H; Lee JH; Nguyen DQ; Hong MK; Lee SH; Kang LW
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32664695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metallo-β-Lactamases: Influence of the Active Site Structure on the Mechanisms of Antibiotic Resistance and Inhibition.
    Levina EO; Khrenova MG
    Biochemistry (Mosc); 2021 Jan; 86(Suppl 1):S24-S37. PubMed ID: 33827398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential Inhibitors Against NDM-1 Type Metallo-β-Lactamases: An Overview.
    Sharma S; Sharma S; Singh PP; Khan IA
    Microb Drug Resist; 2020 Dec; 26(12):1568-1588. PubMed ID: 32486911
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elucidating the Molecular Basis of Avibactam-Mediated Inhibition of Class A β-Lactamases.
    Das CK; Nair NN
    Chemistry; 2020 Aug; 26(43):9639-9651. PubMed ID: 32285965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Designing Inhibitors of β-Lactamase Enzymes to Overcome Carbapenem Resistance in Gram-Negative Bacteria.
    Davies DT; Everett M
    Acc Chem Res; 2021 May; 54(9):2055-2064. PubMed ID: 33788541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural consequences of the active site substitution Cys181 ==> Ser in metallo-beta-lactamase from Bacteroides fragilis.
    Li Z; Rasmussen BA; Herzberg O
    Protein Sci; 1999 Jan; 8(1):249-52. PubMed ID: 10210203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem.
    Garau G; Bebrone C; Anne C; Galleni M; Frère JM; Dideberg O
    J Mol Biol; 2005 Jan; 345(4):785-95. PubMed ID: 15588826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The deacylation mechanism of AmpC beta-lactamase at ultrahigh resolution.
    Chen Y; Minasov G; Roth TA; Prati F; Shoichet BK
    J Am Chem Soc; 2006 Mar; 128(9):2970-6. PubMed ID: 16506777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.