These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

858 related articles for article (PubMed ID: 28745223)

  • 41. The importance of a critical protonation state and the fate of the catalytic steps in class A beta-lactamases and penicillin-binding proteins.
    Golemi-Kotra D; Meroueh SO; Kim C; Vakulenko SB; Bulychev A; Stemmler AJ; Stemmler TL; Mobashery S
    J Biol Chem; 2004 Aug; 279(33):34665-73. PubMed ID: 15152012
    [TBL] [Abstract][Full Text] [Related]  

  • 42. New Conformations of Acylation Adducts of Inhibitors of β-Lactamase from Mycobacterium tuberculosis.
    Tassoni R; Blok A; Pannu NS; Ubbink M
    Biochemistry; 2019 Feb; 58(7):997-1009. PubMed ID: 30632739
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Broad-Spectrum Inhibitors against Class A, B, and C Type β-Lactamases to Block the Hydrolysis against Antibiotics: Kinetics and Structural Characterization.
    Farhat N; Gupta D; Ali A; Kumar Y; Akhtar F; Kulanthaivel S; Mishra P; Khan F; Khan AU
    Microbiol Spectr; 2022 Oct; 10(5):e0045022. PubMed ID: 36069578
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metallo-β-lactamases: structural features, antibiotic recognition, inhibition, and inhibitor design.
    Wang JF; Chou KC
    Curr Top Med Chem; 2013; 13(10):1242-53. PubMed ID: 23647546
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin.
    Hermann JC; Hensen C; Ridder L; Mulholland AJ; Höltje HD
    J Am Chem Soc; 2005 Mar; 127(12):4454-65. PubMed ID: 15783228
    [TBL] [Abstract][Full Text] [Related]  

  • 46. B1-Metallo-β-Lactamases: Where Do We Stand?
    Mojica MF; Bonomo RA; Fast W
    Curr Drug Targets; 2016; 17(9):1029-50. PubMed ID: 26424398
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Zinc and antibiotic resistance: metallo-beta-lactamases and their synthetic analogues.
    Tamilselvi A; Mugesh G
    J Biol Inorg Chem; 2008 Sep; 13(7):1039-53. PubMed ID: 18648861
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Understanding the determinants of substrate specificity in IMP family metallo-β-lactamases: the importance of residue 262.
    Pegg KM; Liu EM; George AC; LaCuran AE; Bethel CR; Bonomo RA; Oelschlaeger P
    Protein Sci; 2014 Oct; 23(10):1451-60. PubMed ID: 25131397
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metallo-β-lactamase structure and function.
    Palzkill T
    Ann N Y Acad Sci; 2013 Jan; 1277():91-104. PubMed ID: 23163348
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In Silico Fragment-Based Design Identifies Subfamily B1 Metallo-β-lactamase Inhibitors.
    Cain R; Brem J; Zollman D; McDonough MA; Johnson RM; Spencer J; Makena A; Abboud MI; Cahill S; Lee SY; McHugh PJ; Schofield CJ; Fishwick CWG
    J Med Chem; 2018 Feb; 61(3):1255-1260. PubMed ID: 29271657
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent advances in the chemistry of beta-lactam compounds as selected active-site serine beta-lactamase inhibitors.
    Mascaretti OA; Danelon GO; Laborde M; Mata EG; Setti EL
    Curr Pharm Des; 1999 Nov; 5(11):939-53. PubMed ID: 10539998
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tackling the Antibiotic Resistance Caused by Class A
    Eiamphungporn W; Schaduangrat N; Malik AA; Nantasenamat C
    Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30061509
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural studies of triazole inhibitors with promising inhibitor effects against antibiotic resistance metallo-β-lactamases.
    Muhammad Z; Skagseth S; Boomgaren M; Akhter S; Fröhlich C; Ismael A; Christopeit T; Bayer A; Leiros HS
    Bioorg Med Chem; 2020 Aug; 28(15):115598. PubMed ID: 32631568
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Development of New Small-Molecule Inhibitors Targeting Bacterial Metallo-β-lactamases.
    Wang P; Cheng J; Liu CC; Tang K; Xu F; Yu Z; Yu B; Chang J
    Curr Top Med Chem; 2018; 18(10):834-843. PubMed ID: 29773066
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evidence of adaptability in metal coordination geometry and active-site loop conformation among B1 metallo-beta-lactamases .
    González JM; Buschiazzo A; Vila AJ
    Biochemistry; 2010 Sep; 49(36):7930-8. PubMed ID: 20677753
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aspergillomarasmine A inhibits metallo-β-lactamases by selectively sequestering Zn
    Sychantha D; Rotondo CM; Tehrani KHME; Martin NI; Wright GD
    J Biol Chem; 2021 Aug; 297(2):100918. PubMed ID: 34181945
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel inhibition mechanism of carbapenems on the ACC-1 class C β-lactamase.
    Bae DW; Jung YE; Jeong BG; Cha SS
    Arch Biochem Biophys; 2020 Oct; 693():108570. PubMed ID: 32888908
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metallo-β-lactamase inhibitors: A continuing challenge for combating antibiotic resistance.
    Kang SJ; Kim DH; Lee BJ
    Biophys Chem; 2024 Jun; 309():107228. PubMed ID: 38552402
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biapenem inactivation by B2 metallo β-lactamases: energy landscape of the post-hydrolysis reactions.
    Gatti DL
    PLoS One; 2012; 7(1):e30079. PubMed ID: 22272276
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Real-time activity assays of β-lactamases in living bacterial cells: application to the inhibition of antibiotic-resistant E. coli strains.
    Ge Y; Zhou YJ; Yang KW; Zhang YL; Xiang Y; Zhang YJ
    Mol Biosyst; 2017 Oct; 13(11):2323-2327. PubMed ID: 28906528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.