These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 28745299)
1. Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features. Nguyen CH; Karavas GK; Artemiadis P J Neural Eng; 2018 Feb; 15(1):016002. PubMed ID: 28745299 [TBL] [Abstract][Full Text] [Related]
2. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI. Kumar S; Mamun K; Sharma A Comput Biol Med; 2017 Dec; 91():231-242. PubMed ID: 29100117 [TBL] [Abstract][Full Text] [Related]
3. Extending motor imagery by speech imagery for brain-computer interface. Wang L; Zhang X; Zhang Y Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7056-9. PubMed ID: 24111370 [TBL] [Abstract][Full Text] [Related]
4. Resting state EEG assisted imagined vowel phonemes recognition by native and non-native speakers using brain connectivity measures. Juyal R; Muthusamy H; Kumar N; Tiwari A Phys Eng Sci Med; 2024 Sep; 47(3):939-954. PubMed ID: 38647635 [TBL] [Abstract][Full Text] [Related]
5. Pure visual imagery as a potential approach to achieve three classes of control for implementation of BCI in non-motor disorders. Sousa T; Amaral C; Andrade J; Pires G; Nunes UJ; Castelo-Branco M J Neural Eng; 2017 Aug; 14(4):046026. PubMed ID: 28466825 [TBL] [Abstract][Full Text] [Related]
6. Imagined speech classification exploiting EEG power spectrum features. Hossain A; Khan P; Kader MF Med Biol Eng Comput; 2024 Aug; 62(8):2529-2544. PubMed ID: 38632207 [TBL] [Abstract][Full Text] [Related]
7. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching. Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118 [TBL] [Abstract][Full Text] [Related]
8. Weighted spatial based geometric scheme as an efficient algorithm for analyzing single-trial EEGS to improve cue-based BCI classification. Alimardani F; Boostani R; Blankertz B Neural Netw; 2017 Aug; 92():69-76. PubMed ID: 28385624 [TBL] [Abstract][Full Text] [Related]
9. Speech-imagery-based brain-computer interface system using ear-EEG. Kaongoen N; Choi J; Jo S J Neural Eng; 2021 Feb; 18(1):016023. PubMed ID: 33629666 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Hyperparameter Optimization in Machine and Deep Learning Methods for Decoding Imagined Speech EEG. Cooney C; Korik A; Folli R; Coyle D Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824559 [TBL] [Abstract][Full Text] [Related]
11. Motor Imagery Classification Based on Bilinear Sub-Manifold Learning of Symmetric Positive-Definite Matrices. Xie X; Yu ZL; Lu H; Gu Z; Li Y IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):504-516. PubMed ID: 27392361 [TBL] [Abstract][Full Text] [Related]
12. A Complete Scheme for Multi-Character Classification Using EEG Signals From Speech Imagery. Pan H; Wang Y; Li Z; Chu X; Teng B; Gao H IEEE Trans Biomed Eng; 2024 Aug; 71(8):2454-2462. PubMed ID: 38470574 [TBL] [Abstract][Full Text] [Related]
13. Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods. Majidov I; Whangbo T Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30978978 [TBL] [Abstract][Full Text] [Related]
14. Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain-computer interfaces. Dong E; Li C; Li L; Du S; Belkacem AN; Chen C Med Biol Eng Comput; 2017 Oct; 55(10):1809-1818. PubMed ID: 28238175 [TBL] [Abstract][Full Text] [Related]
15. Vowel Imagery Decoding toward Silent Speech BCI Using Extreme Learning Machine with Electroencephalogram. Min B; Kim J; Park HJ; Lee B Biomed Res Int; 2016; 2016():2618265. PubMed ID: 28097128 [TBL] [Abstract][Full Text] [Related]
16. Functional Complex Networks Based on Operational Architectonics: Application on EEG-based Brain-computer Interface for Imagined Speech. Iliopoulos AC; Papasotiriou I Neuroscience; 2022 Feb; 484():98-118. PubMed ID: 34871742 [TBL] [Abstract][Full Text] [Related]
17. Multifractal Analysis of Speech Imagery of IPA Vowels. Sikdar D; Roy R; Bakshi K; Mahadevappa M Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440262 [TBL] [Abstract][Full Text] [Related]
18. Interpretation of a deep analysis of speech imagery features extracted by a capsule neural network. Macías-Macías JM; Ramírez-Quintana JA; Chacón-Murguía MI; Torres-García AA; Corral-Martínez LF Comput Biol Med; 2023 Jun; 159():106909. PubMed ID: 37071937 [TBL] [Abstract][Full Text] [Related]
19. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study. Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295 [TBL] [Abstract][Full Text] [Related]
20. Riemannian distance based channel selection and feature extraction combining discriminative time-frequency bands and Riemannian tangent space for MI-BCIs. Qu T; Jin J; Xu R; Wang X; Cichocki A J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36126643 [No Abstract] [Full Text] [Related] [Next] [New Search]