BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28745489)

  • 1. The Dihydroxy Metabolite of the Teratogen Thalidomide Causes Oxidative DNA Damage.
    Wani TH; Chakrabarty A; Shibata N; Yamazaki H; Guengerich FP; Chowdhury G
    Chem Res Toxicol; 2017 Aug; 30(8):1622-1628. PubMed ID: 28745489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity.
    Parman T; Wiley MJ; Wells PG
    Nat Med; 1999 May; 5(5):582-5. PubMed ID: 10229238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human cytochrome P450 oxidation of 5-hydroxythalidomide and pomalidomide, an amino analogue of thalidomide.
    Chowdhury G; Shibata N; Yamazaki H; Guengerich FP
    Chem Res Toxicol; 2014 Jan; 27(1):147-56. PubMed ID: 24350712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embryopathic effects of thalidomide and its hydrolysis products in rabbit embryo culture: evidence for a prostaglandin H synthase (PHS)-dependent, reactive oxygen species (ROS)-mediated mechanism.
    Lee CJ; Gonçalves LL; Wells PG
    FASEB J; 2011 Jul; 25(7):2468-83. PubMed ID: 21502285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Teratogenic effects of thalidomide: molecular mechanisms.
    Ito T; Ando H; Handa H
    Cell Mol Life Sci; 2011 May; 68(9):1569-79. PubMed ID: 21207098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thalidomide: chemistry, therapeutic potential and oxidative stress induced teratogenicity.
    Kumar N; Sharma U; Singh C; Singh B
    Curr Top Med Chem; 2012; 12(13):1436-55. PubMed ID: 22650376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a primary target of thalidomide teratogenicity.
    Ito T; Ando H; Suzuki T; Ogura T; Hotta K; Imamura Y; Yamaguchi Y; Handa H
    Science; 2010 Mar; 327(5971):1345-50. PubMed ID: 20223979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of [glutarimide-2-14C]-thalidomide with rat embryonic DNA in vivo.
    Huang PH; McBride WG
    Teratog Carcinog Mutagen; 1997; 17(1):1-5. PubMed ID: 9249925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering the mystery of thalidomide teratogenicity.
    Ito T; Handa H
    Congenit Anom (Kyoto); 2012 Mar; 52(1):1-7. PubMed ID: 22348778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A possible role of N-cadherin in thalidomide teratogenicity.
    Thiele A; Thormann M; Hofmann HJ; Naumann WW; Eger K; Hauschildt S
    Life Sci; 2000 Jun; 67(4):457-61. PubMed ID: 11003055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide rescues thalidomide mediated teratogenicity.
    Siamwala JH; Veeriah V; Priya MK; Rajendran S; Saran U; Sinha S; Nagarajan S; Pradeep T; Chatterjee S
    Sci Rep; 2012; 2():679. PubMed ID: 22997553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p63 is a cereblon substrate involved in thalidomide teratogenicity.
    Asatsuma-Okumura T; Ando H; De Simone M; Yamamoto J; Sato T; Shimizu N; Asakawa K; Yamaguchi Y; Ito T; Guerrini L; Handa H
    Nat Chem Biol; 2019 Nov; 15(11):1077-1084. PubMed ID: 31591562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel hypothesis for thalidomide-induced limb teratogenesis: redox misregulation of the NF-kappaB pathway.
    Hansen JM; Harris C
    Antioxid Redox Signal; 2004 Feb; 6(1):1-14. PubMed ID: 14713331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate.
    Matyskiela ME; Couto S; Zheng X; Lu G; Hui J; Stamp K; Drew C; Ren Y; Wang M; Carpenter A; Lee CW; Clayton T; Fang W; Lu CC; Riley M; Abdubek P; Blease K; Hartke J; Kumar G; Vessey R; Rolfe M; Hamann LG; Chamberlain PP
    Nat Chem Biol; 2018 Oct; 14(10):981-987. PubMed ID: 30190590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thalidomide-induced limb abnormalities in a humanized CYP3A mouse model.
    Kazuki Y; Akita M; Kobayashi K; Osaki M; Satoh D; Ohta R; Abe S; Takehara S; Kazuki K; Yamazaki H; Kamataki T; Oshimura M
    Sci Rep; 2016 Feb; 6():21419. PubMed ID: 26903378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Teratogen metabolism: activation of thalidomide and thalidomide analogues to products that inhibit the attachment of cells to concanavalin A coated plastic surfaces.
    Braun AG; Weinreb SL
    Biochem Pharmacol; 1984 May; 33(9):1471-7. PubMed ID: 6732864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of thalidomide enantiomer binding to cereblon.
    Mori T; Ito T; Liu S; Ando H; Sakamoto S; Yamaguchi Y; Tokunaga E; Shibata N; Handa H; Hakoshima T
    Sci Rep; 2018 Jan; 8(1):1294. PubMed ID: 29358579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of thalidomide with DNA of rabbit embryos: a possible explanation for its immunosuppressant and teratogenic effects.
    Huang PH; McBride WG; Tuman WG
    Pharmacol Toxicol; 1999 Aug; 85(2):103-4. PubMed ID: 10488693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Molecular Mechanisms of Thalidomide Teratogenicity and Implications for Modern Medicine.
    Knobloch J; Jungck D; Koch A
    Curr Mol Med; 2017; 17(2):108-117. PubMed ID: 28429672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Preventive effects of curcumin on acrylamide-induced DNA damage in HepG2 cells].
    Cao J; Jiang L; Geng C; Yao X
    Wei Sheng Yan Jiu; 2009 Jul; 38(4):392-5. PubMed ID: 19689063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.