These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28745552)

  • 21. Understanding Cognitive Performance During Robot-Assisted Surgery.
    Guru KA; Shafiei SB; Khan A; Hussein AA; Sharif M; Esfahani ET
    Urology; 2015 Oct; 86(4):751-7. PubMed ID: 26255037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cognitive workload modulation through degraded visual stimuli: a single-trial EEG study.
    Yu K; Prasad I; Mir H; Thakor N; Al-Nashash H
    J Neural Eng; 2015 Aug; 12(4):046020. PubMed ID: 26065874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Adaptive Human-Robotic Interaction Architecture for Augmenting Surgery Performance Using Real-Time Workload Sensing-Demonstration of a Semi-autonomous Suction Tool.
    Yang J; Barragan JA; Farrow JM; Sundaram CP; Wachs JP; Yu D
    Hum Factors; 2024 Apr; 66(4):1081-1102. PubMed ID: 36367971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Take-over again: Investigating multimodal and directional TORs to get the driver back into the loop.
    Petermeijer S; Bazilinskyy P; Bengler K; de Winter J
    Appl Ergon; 2017 Jul; 62():204-215. PubMed ID: 28411731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An evaluation of touchscreen versus keyboard/mouse interaction for large screen process control displays.
    Noah B; Li J; Rothrock L
    Appl Ergon; 2017 Oct; 64():1-13. PubMed ID: 28610809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Association of Individual Characteristics with Teleoperation Performance.
    Pan D; Zhang Y; Li Z; Tian Z
    Aerosp Med Hum Perform; 2016 Sep; 87(9):772-80. PubMed ID: 27634696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Augmenting Human Performance in Remotely Piloted Aircraft.
    Gruenwald CM; Middendorf MS; Hoepf MR; Galster SM
    Aerosp Med Hum Perform; 2018 Feb; 89(2):115-121. PubMed ID: 29463356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human-Machine Interaction Assessment by Neurophysiological Measures: A Study on Professional Air Traffic Controllers.
    Arico P; Reynal M; Imbert JP; Hurter C; Borghini G; Di Flumeri G; Sciaraffa N; Di Florio A; Terenzi M; Ferreira A; Pozzi S; Betti V; Marucci M; Pavone E; Telea AC; Babiloni F
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4619-4622. PubMed ID: 30441381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Choosing autonomy modes for multirobot search.
    Lewis M; Wang H; Chien SY; Velagapudi P; Scerri P; Sycara K
    Hum Factors; 2010 Apr; 52(2):225-33. PubMed ID: 20942252
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Statistical modelling of networked human-automation performance using working memory capacity.
    Ahmed N; de Visser E; Shaw T; Mohamed-Ameen A; Campbell M; Parasuraman R
    Ergonomics; 2014; 57(3):295-318. PubMed ID: 24308716
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlling robots in the home: Factors that affect the performance of novice robot operators.
    McGinn C; Sena A; Kelly K
    Appl Ergon; 2017 Nov; 65():23-32. PubMed ID: 28802443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human-cobot collaboration's impact on success, time completion, errors, workload, gestures and acceptability during an assembly task.
    Fournier É; Jeoffrion C; Hmedan B; Pellier D; Fiorino H; Landry A
    Appl Ergon; 2024 Sep; 119():104306. PubMed ID: 38714102
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effectiveness of auditory and tactile crossmodal cues in a dual-task visual and auditory scenario.
    Hopkins K; Kass SJ; Blalock LD; Brill JC
    Ergonomics; 2017 May; 60(5):692-700. PubMed ID: 27267493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting workload profiles of brain-robot interface and electromygraphic neurofeedback with cortical resting-state networks: personal trait or task-specific challenge?
    Fels M; Bauer R; Gharabaghi A
    J Neural Eng; 2015 Aug; 12(4):046029. PubMed ID: 26170164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automation trust and attention allocation in multitasking workspace.
    Karpinsky ND; Chancey ET; Palmer DB; Yamani Y
    Appl Ergon; 2018 Jul; 70():194-201. PubMed ID: 29866311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of cue utilisation in reducing the workload in a train control task.
    Brouwers S; Wiggins MW; Griffin B; Helton WS; O'Hare D
    Ergonomics; 2017 Nov; 60(11):1500-1515. PubMed ID: 28508734
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of a brain-based adaptive system and a manual adaptable system for invoking automation.
    Bailey NR; Scerbo MW; Freeman FG; Mikulka PJ; Scott LA
    Hum Factors; 2006; 48(4):693-709. PubMed ID: 17240718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive Human-Robotic Interaction for  Robotic-assisted Surgical Settings.
    Yang J; Layadi IC; Wachs JP; Yu D
    Mil Med; 2023 Nov; 188(Suppl 6):480-487. PubMed ID: 37948270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tactile cueing effects on performance in simulated aerial combat with high acceleration.
    van Erp JB; Eriksson L; Levin B; Carlander O; Veltman JA; Vos WK
    Aviat Space Environ Med; 2007 Dec; 78(12):1128-34. PubMed ID: 18064917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Individual differences in response to automation: the five factor model of personality.
    Szalma JL; Taylor GS
    J Exp Psychol Appl; 2011 Jun; 17(2):71-96. PubMed ID: 21688932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.